 # Why the Boundary of a Round Drop Becomes a Curve of Order Four Why the Boundary of a Round Drop Becomes a Curve of Order Four
by

Publisher: American Mathematical Society
ISBN/ASIN: 0821870025
ISBN-13: 9780821870020
Number of pages: 72

Description:
This book concerns the problem of evolution of a round oil spot surrounded by water when oil is extracted from a well inside the spot. It turns out that the boundary of the spot remains an algebraic curve of degree four in the course of evolution. This text discusses this topic and other recent work in the theory of fluid flows with a moving boundary.

Home page url

Download or read it online for free here:
Read online
(online reading)

## Similar books Beyond partial differential equations: A course on linear and quasi-linear abstract hyperbolic evolution equations
by - arXiv
This course introduces the use of semigroup methods in the solution of linear and nonlinear (quasi-linear) hyperbolic partial differential equations, with particular application to wave equations and Hermitian hyperbolic systems.
(10169 views) Topics in dynamics I: Flows
by - Princeton University Press
Lecture notes for a course on differential equations covering differential calculus, Picard's method, local structure of vector fields, sums and Lie products, self-adjoint operators on Hilbert space, commutative multiplicity theory, and more.
(16840 views) Introduction to Differential Equations
by - The Hong Kong University of Science &Technology
Contents: A short mathematical review; Introduction to odes; First-order odes; Second-order odes, constant coefficients; The Laplace transform; Series solutions; Systems of equations; Bifurcation theory; Partial differential equations.
(15345 views) Notes on Diffy Qs: Differential Equations for Engineers
by - Lulu.com
One semester introductory course on differential equations aimed at engineers. The book covers first order ODEs, higher order linear ODEs, systems of ODEs, Fourier series and PDEs, eigenvalue problems, and the Laplace transform.
(36395 views)