Geometric Models for Noncommutative Algebra
by Ana Cannas da Silva, Alan Weinstein
Publisher: University of California at Berkeley 1998
Number of pages: 194
Description:
Noncommutative geometry is the study of noncommutative algebras as if they were algebras of functions on spaces, like the commutative algebras associated to affine algebraic varieties, differentiable manifolds, topological spaces, and measure spaces. In this book, we discuss several types of geometric objects which are closely related to noncommutative algebras.
Download or read it online for free here:
Download link
(3.3MB, PDF)
Similar books

by Masoud Khalkhali - University of Western Ontario
Contents: Introduction; Some examples of geometry-algebra correspondence; Noncommutative quotients; Cyclic cohomology; Chern-Connes character; Banach and C*-algebras; Idempotents and finite projective modules; Equivalence of categories.
(6422 views)

by Igor Nikolaev - arXiv
The book covers basics of noncommutative geometry and its applications in topology, algebraic geometry and number theory. Intended for the graduate students and faculty with interests in noncommutative geometry; they can be read by non-experts.
(5259 views)

by Alain Connes, Matilde Marcolli - American Mathematical Society
The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role.
(10833 views)

by Nigel Higson, John Roe - American Mathematical Society
These lectures are intended to introduce key topics in noncommutative geometry to mathematicians unfamiliar with the subject. Topics: applications of noncommutative geometry to problems in ordinary geometry and topology, residue index theorem, etc.
(8515 views)