Logo

Reversible Markov Chains and Random Walks on Graphs

Reversible Markov Chains and Random Walks on Graphs
by

Publisher: University of California, Berkeley
Number of pages: 516

Description:
From the table of contents: General Markov Chains; Reversible Markov Chains; Hitting and Convergence Time, and Flow Rate, Parameters for Reversible Markov Chains; Special Graphs and Trees; Cover Times; Symmetric Graphs and Chains; Advanced L2 Techniques for Bounding Mixing Times; Some Graph Theory and Randomized Algorithms; Continuous State, Infinite State and Random Environment; Interacting Particles on Finite Graphs; Markov Chain Monte Carlo.

Home page url

Download or read it online for free here:
Download link
(1.8MB, PDF)

Similar books

Book cover: A Minimum of Stochastics for ScientistsA Minimum of Stochastics for Scientists
by - Caltech
The book introduces students to the ideas and attitudes that underlie the statistical modeling of physical, chemical, biological systems. The text contains material the author have tried to convey to an audience composed mostly of graduate students.
(8301 views)
Book cover: Markov Chains and Stochastic StabilityMarkov Chains and Stochastic Stability
by - Springer
The book on the theory of general state space Markov chains, and its application to time series analysis, operations research and systems and control theory. An advanced graduate text and a monograph treating the stability of Markov chains.
(16819 views)
Book cover: A defense of Columbo: A multilevel introduction to probabilistic reasoningA defense of Columbo: A multilevel introduction to probabilistic reasoning
by - arXiv
Triggered by a recent interesting article on the too frequent incorrect use of probabilistic evidence in courts, the author introduces the basic concepts of probabilistic inference with a toy model, and discusses several important issues.
(11607 views)
Book cover: Random Matrix Models and Their ApplicationsRandom Matrix Models and Their Applications
by - Cambridge University Press
The book covers broad areas such as topologic and combinatorial aspects of random matrix theory; scaling limits, universalities and phase transitions in matrix models; universalities for random polynomials; and applications to integrable systems.
(11895 views)