**Reversible Markov Chains and Random Walks on Graphs**

by David Aldous, James Allen Fill

**Publisher**: University of California, Berkeley 2014**Number of pages**: 516

**Description**:

From the table of contents: General Markov Chains; Reversible Markov Chains; Hitting and Convergence Time, and Flow Rate, Parameters for Reversible Markov Chains; Special Graphs and Trees; Cover Times; Symmetric Graphs and Chains; Advanced L2 Techniques for Bounding Mixing Times; Some Graph Theory and Randomized Algorithms; Continuous State, Infinite State and Random Environment; Interacting Particles on Finite Graphs; Markov Chain Monte Carlo.

Download or read it online for free here:

**Download link**

(1.8MB, PDF)

## Similar books

**Seeing Theory: A visual introduction to probability and statistics**

by

**T. Devlin, J. Guo, D. Kunin, D. Xiang**-

**Brown University**

The intent of the website and these notes is to provide an intuitive supplement to an introductory level probability and statistics course. The level is also aimed at students who are returning to the subject and would like a concise refresher ...

(

**2904**views)

**Introduction to Probability Theory and Statistics for Linguistics**

by

**Marcus Kracht**-

**UCLA**

Contents: Basic Probability Theory (Conditional Probability, Random Variables, Limit Theorems); Elements of Statistics (Estimators, Tests, Distributions, Correlation and Covariance, Linear Regression, Markov Chains); Probabilistic Linguistics.

(

**8986**views)

**Correlation and Causality**

by

**David A. Kenny**-

**John Wiley & Sons Inc**

This text is a general introduction to the topic of structural analysis. It presumes no previous acquaintance with causal analysis. It is general because it covers all the standard, as well as a few nonstandard, statistical procedures.

(

**12203**views)

**Introduction to Randomness and Statistics**

by

**Alexander K. Hartmann**-

**arXiv**

This is a practical introduction to randomness and data analysis, in particular in the context of computer simulations. At the beginning, the most basics concepts of probability are given, in particular discrete and continuous random variables.

(

**10058**views)