Reversible Markov Chains and Random Walks on Graphs
by David Aldous, James Allen Fill
Publisher: University of California, Berkeley 2014
Number of pages: 516
Description:
From the table of contents: General Markov Chains; Reversible Markov Chains; Hitting and Convergence Time, and Flow Rate, Parameters for Reversible Markov Chains; Special Graphs and Trees; Cover Times; Symmetric Graphs and Chains; Advanced L2 Techniques for Bounding Mixing Times; Some Graph Theory and Randomized Algorithms; Continuous State, Infinite State and Random Environment; Interacting Particles on Finite Graphs; Markov Chain Monte Carlo.
Download or read it online for free here:
Download link
(1.8MB, PDF)
Similar books

by Matthias Vallentin
The cookbook contains a succinct representation of various topics in probability theory and statistics. It provides a comprehensive reference reduced to the mathematical essence, rather than aiming for elaborate explanations.
(21170 views)

by T. Devlin, J. Guo, D. Kunin, D. Xiang - Brown University
The intent of the website and these notes is to provide an intuitive supplement to an introductory level probability and statistics course. The level is also aimed at students who are returning to the subject and would like a concise refresher ...
(10314 views)

by Cosma Rohilla Shalizi - Cambridge University Press
This is a draft textbook on data analysis methods, intended for a one-semester course for advance undergraduate students who have already taken classes in probability, mathematical statistics, and linear regression. It began as the lecture notes.
(12563 views)

by D. A. Levin, Y. Peres, E. L. Wilmer - American Mathematical Society
An introduction to the modern approach to the theory of Markov chains. The main goal of this approach is to determine the rate of convergence of a Markov chain to the stationary distribution as a function of the size and geometry of the state space.
(16120 views)