Logo

Lectures on Stochastic Analysis

Lectures on Stochastic Analysis
by

Publisher: University of Wisconsin
Number of pages: 119

Description:
The course will introduce stochastic integrals with respect to general semimartingales, stochastic differential equations based on these integrals, integration with respect to Poisson random measures, stochastic differential equations for general Markov processes, change of measure, and applications to finance, filtering and control. The intention has been to state the theorems correctly with all hypotheses, but no attempt has been made to include detailed proofs.

Home page url

Download or read it online for free here:
Download link
(700KB, PDF)

Similar books

Book cover: Probability and Statistics CookbookProbability and Statistics Cookbook
by
The cookbook contains a succinct representation of various topics in probability theory and statistics. It provides a comprehensive reference reduced to the mathematical essence, rather than aiming for elaborate explanations.
(11953 views)
Book cover: Convergence of Stochastic ProcessesConvergence of Stochastic Processes
by - Springer
Selected parts of empirical process theory, with applications to mathematical statistics. The book describes the combinatorial ideas needed to prove maximal inequalities for empirical processes indexed by classes of sets or classes of functions.
(9188 views)
Book cover: Applied Nonparametric RegressionApplied Nonparametric Regression
by - Cambridge University Press
Nonparametric regression analysis has become central to economic theory. Hardle, by writing the first comprehensive and accessible book on the subject, contributed enormously to making nonparametric regression equally central to econometric practice.
(17073 views)
Book cover: Bayesian Spectrum Analysis and Parameter EstimationBayesian Spectrum Analysis and Parameter Estimation
by - Springer
This work is a research document on the application of probability theory to the parameter estimation problem. The people who will be interested in this material are physicists, economists, and engineers who have to deal with data on a daily basis.
(10706 views)