**Lectures on Stochastic Analysis**

by Thomas G. Kurtz

**Publisher**: University of Wisconsin 2007**Number of pages**: 119

**Description**:

The course will introduce stochastic integrals with respect to general semimartingales, stochastic differential equations based on these integrals, integration with respect to Poisson random measures, stochastic differential equations for general Markov processes, change of measure, and applications to finance, filtering and control. The intention has been to state the theorems correctly with all hypotheses, but no attempt has been made to include detailed proofs.

Download or read it online for free here:

**Download link**

(700KB, PDF)

## Similar books

**Design of Comparative Experiments**

by

**R. A. Bailey**-

**Cambridge University Press**

This book develops a coherent framework for thinking about factors that affect experiments and their relationships, including the use of Hasse diagrams. The book is ideal for advanced undergraduate and beginning graduate courses.

(

**15907**views)

**Correlation and Causality**

by

**David A. Kenny**-

**John Wiley & Sons Inc**

This text is a general introduction to the topic of structural analysis. It presumes no previous acquaintance with causal analysis. It is general because it covers all the standard, as well as a few nonstandard, statistical procedures.

(

**10499**views)

**Probability and Mathematical Statistics**

by

**Prasanna Sahoo**-

**University of Louisville**

This book is an introduction to probability and mathematical statistics intended for students already having some elementary mathematical background. It is intended for a one-year junior or senior level undergraduate or beginning graduate course.

(

**2945**views)

**Applied Nonparametric Regression**

by

**Wolfgang HÃ¤rdle**-

**Cambridge University Press**

Nonparametric regression analysis has become central to economic theory. Hardle, by writing the first comprehensive and accessible book on the subject, contributed enormously to making nonparametric regression equally central to econometric practice.

(

**20066**views)