**Introduction to Randomness and Statistics**

by Alexander K. Hartmann

**Publisher**: arXiv 2009**Number of pages**: 95

**Description**:

This text provides a practical introduction to randomness and data analysis, in particular in the context of computer simulations. At the beginning, the most basics concepts of probability are given, in particular discrete and continuous random variables. The text is basically self-contained, comes with several example C programs and contains eight practical exercises.

Download or read it online for free here:

**Download link**

(2.4MB, PDF)

## Similar books

**Stochastic Integration and Stochastic Differential Equations**

by

**Klaus Bichteler**-

**University of Texas**

Written for graduate students of mathematics, physics, electrical engineering, and finance. The students are expected to know the basics of point set topology up to Tychonoff's theorem, general integration theory, and some functional analysis.

(

**11393**views)

**Introduction to Probability Theory and Statistics for Linguistics**

by

**Marcus Kracht**-

**UCLA**

Contents: Basic Probability Theory (Conditional Probability, Random Variables, Limit Theorems); Elements of Statistics (Estimators, Tests, Distributions, Correlation and Covariance, Linear Regression, Markov Chains); Probabilistic Linguistics.

(

**10288**views)

**Introduction to Probability, Statistics, and Random Processes**

by

**Hossein Pishro-Nik**-

**Kappa Research, LLC**

This book introduces students to probability, statistics, and stochastic processes. It can be used by both students and practitioners in engineering, sciences, finance, and other fields. It provides a clear and intuitive approach to these topics.

(

**11156**views)

**Markov Chains and Stochastic Stability**

by

**S.P. Meyn, R.L. Tweedie**-

**Springer**

The book on the theory of general state space Markov chains, and its application to time series analysis, operations research and systems and control theory. An advanced graduate text and a monograph treating the stability of Markov chains.

(

**18396**views)