**Introduction to Randomness and Statistics**

by Alexander K. Hartmann

**Publisher**: arXiv 2009**Number of pages**: 95

**Description**:

This text provides a practical introduction to randomness and data analysis, in particular in the context of computer simulations. At the beginning, the most basics concepts of probability are given, in particular discrete and continuous random variables. The text is basically self-contained, comes with several example C programs and contains eight practical exercises.

Download or read it online for free here:

**Download link**

(2.4MB, PDF)

## Similar books

**Basic Data Analysis and More: A Guided Tour Using Python**

by

**O. Melchert**-

**arXiv**

In these lecture notes, a selection of frequently required statistical tools will be introduced and illustrated. They allow to post-process data that stem from, e.g., large-scale numerical simulations (aka sequence of random experiments).

(

**14887**views)

**Probability, Statistics and Stochastic Processes**

by

**Cosma Rohilla Shalizi**

Contents: Probability (Probability Calculus, Random Variables, Discrete and Continuous Distributions); Statistics (Handling of Data, Sampling, Estimation, Hypothesis Testing); Stochastic Processes (Markov Processes, Continuous-Time Processes).

(

**11952**views)

**Introduction to Probability and Statistics Using R**

by

**G. Jay Kerns**

A textbook for an undergraduate course in probability and statistics. The prerequisites are two or three semesters of calculus and some linear algebra. Students attending the class include mathematics, engineering, and computer science majors.

(

**10459**views)

**Stochastic Integration and Stochastic Differential Equations**

by

**Klaus Bichteler**-

**University of Texas**

Written for graduate students of mathematics, physics, electrical engineering, and finance. The students are expected to know the basics of point set topology up to Tychonoff's theorem, general integration theory, and some functional analysis.

(

**14399**views)