Logo

Correlation and Causality by David A. Kenny

Large book cover: Correlation and Causality

Correlation and Causality
by

Publisher: John Wiley & Sons Inc
ISBN/ASIN: 0471024392
ISBN-13: 9780471024392
Number of pages: 353

Description:
This text is a general introduction to the topic of structural analysis. It is an introduction because it presumes no previous acquaintance with causal analysis. It is general because it covers all the standard, as well as a few nonstandard, statistical procedures. Since the topic is structural analysis, and not statistics, very little discussion is given to the actual mechanics of estimation.

Home page url

Download or read it online for free here:
Download link
(2.1MB, PDF)

Similar books

Book cover: Lectures on Stochastic AnalysisLectures on Stochastic Analysis
by - University of Wisconsin
Covered topics: stochastic integrals with respect to general semimartingales, stochastic differential equations based on these integrals, integration with respect to Poisson measures, stochastic differential equations for general Markov processes.
(8233 views)
Book cover: Probability and StatisticsProbability and Statistics
- UCLA
This book is developed as a free, collaborative and interactive learning environment for elementary probability and statistics education. The book blends information technology, scientific techniques and modern pedagogical concepts.
(4407 views)
Book cover: Applied Nonparametric RegressionApplied Nonparametric Regression
by - Cambridge University Press
Nonparametric regression analysis has become central to economic theory. Hardle, by writing the first comprehensive and accessible book on the subject, contributed enormously to making nonparametric regression equally central to econometric practice.
(16855 views)
Book cover: An Introduction to Stochastic PDEsAn Introduction to Stochastic PDEs
by - arXiv
This text is an attempt to give a reasonably self-contained presentation of the basic theory of stochastic partial differential equations, taking for granted basic measure theory, functional analysis and probability theory, but nothing else.
(7745 views)