Logo

Correlation and Causality by David A. Kenny

Large book cover: Correlation and Causality

Correlation and Causality
by

Publisher: John Wiley & Sons Inc
ISBN/ASIN: 0471024392
ISBN-13: 9780471024392
Number of pages: 353

Description:
This text is a general introduction to the topic of structural analysis. It is an introduction because it presumes no previous acquaintance with causal analysis. It is general because it covers all the standard, as well as a few nonstandard, statistical procedures. Since the topic is structural analysis, and not statistics, very little discussion is given to the actual mechanics of estimation.

Home page url

Download or read it online for free here:
Download link
(2.1MB, PDF)

Similar books

Book cover: Theory of Probability: A Historical EssayTheory of Probability: A Historical Essay
by - arXiv.org
This book covers the history of probability up to Kolmogorov with essential additional coverage of statistics up to Fisher. The book covers an extremely wide field, and is targeted at the same readers as any other book on history of science.
(4512 views)
Book cover: Think Stats: Probability and Statistics for ProgrammersThink Stats: Probability and Statistics for Programmers
by - Green Tea Press
Think Stats is an introduction to Probability and Statistics for Python programmers. This new book emphasizes simple techniques you can use to explore real data sets and answer interesting statistical questions. Basic skills in Python are assumed.
(18032 views)
Book cover: Introduction to Probability and Statistics Using RIntroduction to Probability and Statistics Using R
by
A textbook for an undergraduate course in probability and statistics. The prerequisites are two or three semesters of calculus and some linear algebra. Students attending the class include mathematics, engineering, and computer science majors.
(7095 views)
Book cover: Inverse Problem Theory and Methods for Model Parameter EstimationInverse Problem Theory and Methods for Model Parameter Estimation
by - SIAM
The first part deals with discrete inverse problems with a finite number of parameters, while the second part deals with general inverse problems. The book for scientists and applied mathematicians facing the interpretation of experimental data.
(13500 views)