**Elementary Real Analysis**

by B. S. Thomson, J. B. Bruckner, A. M. Bruckner

**Publisher**: Prentice Hall 2001**ISBN/ASIN**: 0130190756**ISBN-13**: 9780130190758**Number of pages**: 735

**Description**:

Elementary Real Analysis is written in a rigorous, yet reader friendly style with motivational and historical material that emphasizes the "big picture" and makes proofs seem natural rather than mysterious. Introduces key concepts such as point set theory, uniform continuity of functions and uniform convergence of sequences of functions. Covers metric spaces. Ideal for readers interested in mathematics, particularly in advanced calculus and real analysis.

Download or read it online for free here:

**Read online**

(online reading)

## Similar books

**The Foundations of Analysis**

by

**Larry Clifton**-

**arXiv**

This is a detailed introduction to the real number system from a categorical perspective. We begin with the categorical definition of the natural numbers, review the Eudoxus theory of ratios, and then define the positive real numbers categorically.

(

**3047**views)

**Undergraduate Analysis Tools**

by

**Bruce K. Driver**-

**University of California, San Diego**

Contents: Natural, integer, and rational Numbers; Fields; Real Numbers; Complex Numbers; Set Operations, Functions, and Counting; Metric Spaces; Series and Sums in Banach Spaces; Topological Considerations; Differential Calculus in One Real Variable.

(

**2190**views)

**Introduction to Lebesgue Integration**

by

**W W L Chen**-

**Macquarie University**

An introduction to some of the basic ideas in Lebesgue integration with the minimal use of measure theory. Contents: the real numbers and countability, the Riemann integral, point sets, the Lebesgue integral, monotone convergence theorem, etc.

(

**9784**views)

**Lectures on Lipschitz Analysis**

by

**Juha Heinonen**

In these lectures, we concentrate on the theory of Lipschitz functions in Euclidean spaces. From the table of contents: Introduction; Extension; Differentiability; Sobolev spaces; Whitney flat forms; Locally standard Lipschitz structures.

(

**5492**views)