Logo

Elementary Real Analysis by B. S. Thomson, J. B. Bruckner, A. M. Bruckner

Large book cover: Elementary Real Analysis

Elementary Real Analysis
by

Publisher: Prentice Hall
ISBN/ASIN: 0130190756
ISBN-13: 9780130190758
Number of pages: 735

Description:
Elementary Real Analysis is written in a rigorous, yet reader friendly style with motivational and historical material that emphasizes the "big picture" and makes proofs seem natural rather than mysterious. Introduces key concepts such as point set theory, uniform continuity of functions and uniform convergence of sequences of functions. Covers metric spaces. Ideal for readers interested in mathematics, particularly in advanced calculus and real analysis.

Home page url

Download or read it online for free here:
Read online
(online reading)

Similar books

Book cover: The Foundations of AnalysisThe Foundations of Analysis
by - arXiv
This is a detailed introduction to the real number system from a categorical perspective. We begin with the categorical definition of the natural numbers, review the Eudoxus theory of ratios, and then define the positive real numbers categorically.
(3047 views)
Book cover: Undergraduate Analysis ToolsUndergraduate Analysis Tools
by - University of California, San Diego
Contents: Natural, integer, and rational Numbers; Fields; Real Numbers; Complex Numbers; Set Operations, Functions, and Counting; Metric Spaces; Series and Sums in Banach Spaces; Topological Considerations; Differential Calculus in One Real Variable.
(2190 views)
Book cover: Introduction to Lebesgue IntegrationIntroduction to Lebesgue Integration
by - Macquarie University
An introduction to some of the basic ideas in Lebesgue integration with the minimal use of measure theory. Contents: the real numbers and countability, the Riemann integral, point sets, the Lebesgue integral, monotone convergence theorem, etc.
(9784 views)
Book cover: Lectures on Lipschitz AnalysisLectures on Lipschitz Analysis
by
In these lectures, we concentrate on the theory of Lipschitz functions in Euclidean spaces. From the table of contents: Introduction; Extension; Differentiability; Sobolev spaces; Whitney flat forms; Locally standard Lipschitz structures.
(5492 views)