**Why are Braids Orderable?**

by Patrick Dehornoy, at al.

2010**Number of pages**: 206

**Description**:

In the decade since the discovery that Artin's braid groups enjoy a left-invariant linear ordering, several quite different approaches have been applied to understand this phenomenon. This book is an account of those approaches, involving self-distributive algebra, uniform finite trees, combinatorial group theory, mapping class groups, laminations, and hyperbolic geometry.

Download or read it online for free here:

**Download link**

(1.7MB, PDF)

## Similar books

**An Introduction to Group Theory: Applications to Mathematical Music Theory**

by

**Flor Aceff-Sanchez, et al.**-

**BookBoon**

In this text, a modern presentation of the fundamental notions of Group Theory is chosen, where the language of commutative diagrams and universal properties, so necessary in Modern Mathematics, in Physics and Computer Science, is introduced.

(

**7585**views)

**Geometry and Group Theory**

by

**Christopher Pope**-

**Texas A&M University**

Lecture notes on Geometry and Group Theory. In this course, we develop the basic notions of Manifolds and Geometry, with applications in physics, and also we develop the basic notions of the theory of Lie Groups, and their applications in physics.

(

**14982**views)

**Theory and Applications of Finite Groups**

by

**G. A. Miller, H. F. Blichfeldt, L. E. Dickson**-

**J. Wiley**

The book presents in a unified manner the more fundamental aspects of finite groups and their applications, and at the same time preserves the advantage which arises when each branch of an extensive subject is written by a specialist in that branch.

(

**5316**views)

**Symmetry Groups and Their Applications**

by

**Willard Miller**-

**Academic Press**

A beginning graduate level book on applied group theory. Only those aspects of group theory are treated which are useful in the physical sciences, but the mathematical apparatus underlying the applications is presented with a high degree of rigor.

(

**11460**views)