**Why are Braids Orderable?**

by Patrick Dehornoy, at al.

2010**Number of pages**: 206

**Description**:

In the decade since the discovery that Artin's braid groups enjoy a left-invariant linear ordering, several quite different approaches have been applied to understand this phenomenon. This book is an account of those approaches, involving self-distributive algebra, uniform finite trees, combinatorial group theory, mapping class groups, laminations, and hyperbolic geometry.

Download or read it online for free here:

**Download link**

(1.7MB, PDF)

## Similar books

**Groups as Graphs**

by

**W. B. V. Kandasamy, F. Smarandache**-

**CuArt**

In this book, for the first time, the authors represented every finite group in the form of a graph. This study is significant because properties of groups can be immediately obtained by looking at the graphs of the groups.

(

**7557**views)

**Smarandache Semigroups**

by

**W. B. Vasantha Kandasamy**-

**American Research Press**

The Smarandache semigroups exhibit properties of both a group and a semigroup simultaneously. This book assumes the reader to have a good background on group theory; we give some recollection about groups and some of its properties for reference.

(

**5892**views)

**Combinatorial Group Theory**

by

**Charles F. Miller III**-

**University of Melbourne**

Lecture notes for the subject Combinatorial Group Theory at the University of Melbourne. Contents: About groups; Free groups and presentations; Construction of new groups; Properties, embeddings and examples; Subgroup Theory; Decision Problems.

(

**9700**views)

**Group Characters, Symmetric Functions, and the Hecke Algebra**

by

**David M. Goldschmidt**-

**American Mathematical Society**

The book covers a set of interrelated topics, presenting a self-contained exposition of the algebra behind the Jones polynomial along with various excursions into related areas. Directed at graduate students and mathematicians.

(

**7550**views)