**A Short Introduction to Classical and Quantum Integrable Systems**

by O. Babelon

2007**Number of pages**: 145

**Description**:

An introduction to integrable systems. From the table of contents: Integrable dynamical systems; Solution by analytical methods; Infinite dimensional systems; The Jaynes-Cummings-Gaudin model; The Heisenberg spin chain; Nested Bethe Ansatz.

Download or read it online for free here:

**Download link**

(780KB, PDF)

## Similar books

**Around the Boundary of Complex Dynamics**

by

**Roland K. W. Roeder**-

**arXiv**

We introduce the exciting field of complex dynamics at an undergraduate level while reviewing, reinforcing, and extending the ideas learned in an typical first course on complex analysis. Julia sets and the famous Mandelbrot set will be introduced...

(

**4133**views)

**Computable Integrability**

by

**Alexey Shabat, Elena Kartashova**-

**arXiv**

A preliminary version of the textbook on integrable systems. Contents: General notions and ideas; Riccati equation; Factorization of linear operators; Commutativity of linear operators; Integrability of non-linear PDEs; Burgers-type equations.

(

**6662**views)

**Mathematical Principals of Dynamic Systems and the Foundations of Quantum Physics**

by

**Eric Tesse**-

**arXiv**

This article will take up the question of what underlies the quantum formalism, whether it can be derived from simpler mathematical structures, and if so, what physical properties a system must possess in order for the formalism to hold.

(

**8021**views)

**Perturbation Theory of Dynamical Systems**

by

**Nils Berglund**-

**arXiv**

These are lecture notes for undergraduate Mathematics and Physics students. They cover a few selected topics from perturbation theory at an introductory level: Bifurcations and Unfolding; Regular Perturbation Theory; Singular Perturbation Theory.

(

**4369**views)