**Bayesian Reasoning and Machine Learning**

by David Barber

**Publisher**: Cambridge University Press 2011**ISBN/ASIN**: 0521518148**ISBN-13**: 9780521518147**Number of pages**: 644

**Description**:

The book is designed for final-year undergraduates and master's students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basic reasoning to advanced techniques within the framework of graphical models.

Download or read it online for free here:

**Download link**

(15MB, PDF)

## Similar books

**A Course in Machine Learning**

by

**Hal DaumÃ© III**-

**ciml.info**

Tis is a set of introductory materials that covers most major aspects of modern machine learning (supervised and unsupervised learning, large margin methods, probabilistic modeling, etc.). It's focus is on broad applications with a rigorous backbone.

(

**7575**views)

**A Survey of Statistical Network Models**

by

**A. Goldenberg, A.X. Zheng, S.E. Fienberg, E.M. Airoldi**-

**arXiv**

We begin with the historical development of statistical network modeling and then we introduce some examples in the network literature. Our subsequent discussion focuses on prominent static and dynamic network models and their interconnections.

(

**2688**views)

**The LION Way: Machine Learning plus Intelligent Optimization**

by

**Roberto Battiti, Mauro Brunato**-

**Lionsolver, Inc.**

Learning and Intelligent Optimization (LION) is the combination of learning from data and optimization applied to solve complex problems. This book is about increasing the automation level and connecting data directly to decisions and actions.

(

**11202**views)

**Learning Deep Architectures for AI**

by

**Yoshua Bengio**-

**Now Publishers**

This book discusses the principles of learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models.

(

**2122**views)