**Bayesian Reasoning and Machine Learning**

by David Barber

**Publisher**: Cambridge University Press 2011**ISBN/ASIN**: 0521518148**ISBN-13**: 9780521518147**Number of pages**: 644

**Description**:

The book is designed for final-year undergraduates and master's students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basic reasoning to advanced techniques within the framework of graphical models.

Download or read it online for free here:

**Download link**

(15MB, PDF)

## Similar books

**Lecture Notes in Machine Learning**

by

**Zdravko Markov**-

**Central Connecticut State University**

Contents: Introduction; Concept learning; Languages for learning; Version space learning; Induction of Decision trees; Covering strategies; Searching the generalization / specialization graph; Inductive Logic Progrogramming; Unsupervised Learning ...

(

**3136**views)

**Reinforcement Learning**

by

**C. Weber, M. Elshaw, N. M. Mayer**-

**InTech**

This book describes and extends the scope of reinforcement learning. It also shows that there is already wide usage in numerous fields. Reinforcement learning can tackle control tasks that are too complex for traditional controllers.

(

**11513**views)

**Modeling Agents with Probabilistic Programs**

by

**Owain Evans, et al.**-

**AgentModels.org**

This book describes and implements models of rational agents for (PO)MDPs and Reinforcement Learning. One motivation is to create richer models of human planning, which capture human biases. The book assumes basic programming experience.

(

**472**views)

**Reinforcement Learning: An Introduction**

by

**Richard S. Sutton, Andrew G. Barto**-

**The MIT Press**

The book provides a clear and simple account of the key ideas and algorithms of reinforcement learning. It covers the history and the most recent developments and applications. The only necessary mathematical background are concepts of probability.

(

**10696**views)