Logo

Bayesian Reasoning and Machine Learning

Large book cover: Bayesian Reasoning and Machine Learning

Bayesian Reasoning and Machine Learning
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521518148
ISBN-13: 9780521518147
Number of pages: 644

Description:
The book is designed for final-year undergraduates and master's students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basic reasoning to advanced techniques within the framework of graphical models.

Home page url

Download or read it online for free here:
Download link
(15MB, PDF)

Similar books

Book cover: Introduction To Machine LearningIntroduction To Machine Learning
by
This book concentrates on the important ideas in machine learning, to give the reader sufficient preparation to make the extensive literature on machine learning accessible. The author surveys the important topics in machine learning circa 1996.
(30569 views)
Book cover: A Brief Introduction to Machine Learning for EngineersA Brief Introduction to Machine Learning for Engineers
by - arXiv.org
This monograph provides the starting point to the literature that every engineer new to machine learning needs. It offers a basic and compact reference that describes key ideas and principles in simple terms and within a unified treatment.
(7322 views)
Book cover: Learning Deep Architectures for AILearning Deep Architectures for AI
by - Now Publishers
This book discusses the principles of learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models.
(8500 views)
Book cover: Information Theory, Inference, and Learning AlgorithmsInformation Theory, Inference, and Learning Algorithms
by - Cambridge University Press
A textbook on information theory, Bayesian inference and learning algorithms, useful for undergraduates and postgraduates students, and as a reference for researchers. Essential reading for students of electrical engineering and computer science.
(29923 views)