Logo

Bayesian Reasoning and Machine Learning

Large book cover: Bayesian Reasoning and Machine Learning

Bayesian Reasoning and Machine Learning
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521518148
ISBN-13: 9780521518147
Number of pages: 644

Description:
The book is designed for final-year undergraduates and master's students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basic reasoning to advanced techniques within the framework of graphical models.

Home page url

Download or read it online for free here:
Download link
(15MB, PDF)

Similar books

Book cover: Machine Learning, Neural and Statistical ClassificationMachine Learning, Neural and Statistical Classification
by - Ellis Horwood
The book provides a review of different approaches to classification, compares their performance on challenging data-sets, and draws conclusions on their applicability to realistic industrial problems. A wide variety of approaches has been taken.
(22870 views)
Book cover: Modeling Agents with Probabilistic ProgramsModeling Agents with Probabilistic Programs
by - AgentModels.org
This book describes and implements models of rational agents for (PO)MDPs and Reinforcement Learning. One motivation is to create richer models of human planning, which capture human biases. The book assumes basic programming experience.
(3041 views)
Book cover: The Elements of Statistical Learning: Data Mining, Inference, and PredictionThe Elements of Statistical Learning: Data Mining, Inference, and Prediction
by - Springer
This book brings together many of the important new ideas in learning, and explains them in a statistical framework. The authors emphasize the methods and their conceptual underpinnings rather than their theoretical properties.
(34946 views)
Book cover: Gaussian Processes for Machine LearningGaussian Processes for Machine Learning
by - The MIT Press
Gaussian processes provide a principled, practical, probabilistic approach to learning in kernel machines. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics.
(23273 views)