Logo

Statistical Field Theory by R R Horgan

Small book cover: Statistical Field Theory

Statistical Field Theory
by

Publisher: University of Cambridge
Number of pages: 75

Description:
These notes are concerned with the physics of phase transitions: the phenomenon that in particular environments, quantified by particular values of external parameters such as temperature, magnetic field etc., many systems exhibit singularities in the thermodynamic variables which best describe the macroscopic state of the system.

Home page url

Download or read it online for free here:
Download link
(920KB, PDF)

Similar books

Book cover: Phase Transitions and Collective PhenomenaPhase Transitions and Collective Phenomena
by - University of Cambridge
Contents -- Preface; Chapter 1: Critical Phenomena; Chapter 2: Ginzburg-Landau Theory; Chapter 3: Scaling Theory; Chapter 4: Renormalisation Group; Chapter 5: Topological Phase Transitions; Chapter 6: Functional Methods in Quantum Mechanics.
(4495 views)
Book cover: Lecture Notes on Thermodynamics and Statistical MechanicsLecture Notes on Thermodynamics and Statistical Mechanics
by - University of California, San Diego
Contents: Probability 2. Thermodynamics 3. Ergodicity and the Approach to Equilibrium 4. Statistical Ensembles 5. Noninteracting Quantum Systems 6. Classical Interacting Systems 7. Mean Field Theory of Phase Transitions 8. Nonequilibrium Phenomena.
(7541 views)
Book cover: Pure State Quantum Statistical MechanicsPure State Quantum Statistical Mechanics
by - arXiv
A new approach towards the foundations of Statistical Mechanics is explored. The approach is genuine quantum in the sense that statistical behavior is a consequence of objective quantum uncertainties due to entanglement and uncertainty relations.
(6701 views)
Book cover: Elementary Principles of Statistical MechanicsElementary Principles of Statistical Mechanics
by - Charles Scribner's Sons
Written by J. Willard Gibbs, this book was the first to bring together and arrange in logical order the works of Clausius, Maxwell, Boltzmann, and Gibbs himself. The text remains a valuable collection of fundamental equations and principles.
(8702 views)