**A Quick Review of Commutative Algebra**

by Sudhir R. Ghorpade

**Publisher**: Indian Institute of Technology, Bombay 2000**Number of pages**: 13

**Description**:

These notes attempt to give a rapid review of the rudiments of classical commutative algebra. Some of the main results whose proofs are outlined here are: Hilbert basis theorem, primary decomposition of ideals in noetherian rings, Krull intersection theorem, Going up and Going down theorems for integral extensions, Noether's Normalization Lemma and Hilbert's Nullstellensatz.

Download or read it online for free here:

**Download link**

(200KB, PDF)

## Similar books

**Commutative Algebra and Noncommutative Algebraic Geometry**

by

**David Eisenbud, et al.**-

**Cambridge University Press**

The books cover birational geometry, D-modules, invariant theory, matrix factorizations, noncommutative resolutions, singularity categories, support varieties, tilting theory, etc. These volumes reflect the lively interaction between the subjects.

(

**2453**views)

**Trends in Commutative Algebra**

by

**Luchezar L. Avramov, at al.**-

**Cambridge University Press**

This book focuses on the interaction of commutative algebra with other areas of mathematics, including algebraic geometry, group cohomology and representation theory, and combinatorics, with all necessary background provided.

(

**7869**views)

**Commutative Algebra**

by

**Keerthi Madapusi**-

**Harvard University**

Contents: Graded Rings and Modules; Flatness; Integrality: the Cohen-Seidenberg Theorems; Completions and Hensel's Lemma; Dimension Theory; Invertible Modules and Divisors; Noether Normalization and its Consequences; Quasi-finite Algebras; etc.

(

**7402**views)

**Theory and Applications of Lattice Point Methods for Binomial Ideals**

by

**Ezra Miller**-

**arXiv**

This is a survey of lattice point methods for binomial ideals. It is aimed at students and researchers in algebra; it includes many examples, open problems, and elementary introductions to the motivations and background from outside of algebra.

(

**6369**views)