Logo

Vector Analysis and the Theory of Relativity

Large book cover: Vector Analysis and the Theory of Relativity

Vector Analysis and the Theory of Relativity
by

Publisher: Johns Hopkins press
ISBN/ASIN: 1440094349
Number of pages: 156

Description:
This monograph is the outcome of a short course of lectures delivered, during the summer of 1920, to members of the graduate department of mathematics of The Johns Hopkins University. Considerations of space have made it somewhat condensed in form, but it is hoped that the mode of presentation is sufficiently novel to avoid some of the difficulties of the subject.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: The Geometry of Vector CalculusThe Geometry of Vector Calculus
by - Oregon State University
Contents: Chapter 1: Coordinates and Vectors; Chapter 2: Multiple Integrals; Chapter 3: Vector Integrals; Chapter 4: Partial Derivatives; Chapter 5: Gradient; Chapter 6: Other Vector Derivatives; Chapter 7: Power Series; Chapter 8: Delta Functions.
(5468 views)
Book cover: Vector Calculus, with Applications to PhysicsVector Calculus, with Applications to Physics
by - D. Van Nostrand company
Every physical term beyond mere elementary terms is carefully defined. On the other hand for the physical student there will be found a large collection of examples and exercises which will show him the utility of the mathematical methods.
(4940 views)
Book cover: Vector Analysis NotesVector Analysis Notes
by - matthewhutton.com
Contents: Line Integrals; Gradient Vector Fields; Surface Integrals; Divergence of Vector Fields; Gauss Divergence Theorem; Integration by Parts; Green's Theorem; Stokes Theorem; Spherical Coordinates; Complex Differentation; Complex power series...
(3731 views)
Book cover: Multivariable and Vector AnalysisMultivariable and Vector Analysis
by - Macquarie University
Introduction to multivariable and vector analysis: functions of several variables, differentiation, implicit and inverse function theorems, higher order derivatives, double and triple integrals, vector fields, integrals over paths, etc.
(9600 views)