Logo

A Course of Pure Mathematics

Large book cover: A Course of Pure Mathematics

A Course of Pure Mathematics
by

Publisher: Cambridge University Press
ISBN/ASIN: 1434404927
Number of pages: 476

Description:
This classic book has inspired successive generations of budding mathematicians at the beginning of their undergraduate courses. Hardy combines the enthusiasm of the missionary with the rigor of the purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: Theory of the IntegralTheory of the Integral
by - ClassicalRealAnalysis.info
This text is intended as a treatise for a rigorous course introducing the elements of integration theory on the real line. All of the important features of the Riemann integral, the Lebesgue integral, and the Henstock-Kurzweil integral are covered.
(15202 views)
Book cover: Set Theoretic Real AnalysisSet Theoretic Real Analysis
by - Heldermann Verlag
This text surveys the recent results that concern real functions whose statements involve the use of set theory. The choice of the topics follows the author's personal interest in the subject. Most of the results are left without the proofs.
(12565 views)
Book cover: Real Variables: With Basic Metric Space TopologyReal Variables: With Basic Metric Space Topology
by - Institute of Electrical & Electronics Engineering
A text for a first course in real variables for students of engineering, physics, and economics, who need to know real analysis in order to cope with the professional literature. The subject matter is fundamental for more advanced mathematical work.
(57440 views)
Book cover: Homeomorphisms in AnalysisHomeomorphisms in Analysis
by - American Mathematical Society
This book features the interplay of two main branches of mathematics: topology and real analysis. The text covers Lebesgue measurability, Baire classes of functions, differentiability, the Blumberg theorem, various theorems on Fourier series, etc.
(11885 views)