Logo

Lectures on Stratification of Complex Analytic Sets

Small book cover: Lectures on Stratification of Complex Analytic Sets

Lectures on Stratification of Complex Analytic Sets
by

Publisher: Tata Institute of Fundamental Research
ISBN/ASIN: B0006D2VDK
Number of pages: 67

Description:
Contents: Preliminaries; Some theorems on stratification; Whitney's Theorems (Tangent Cones, Wings, The singular set Sa); Whitney Stratifications and pseudofibre bundles (Pseudo fibre spaces, Obstructions in pseudo-fibrations, etc.).

Download or read it online for free here:
Download link
(370KB, PDF)

Similar books

Book cover: Calculus of Residua: Complex Functions Theory a-2Calculus of Residua: Complex Functions Theory a-2
by - BookBoon
This is the second part in the series of books on complex functions theory. From the table of contents: Introduction; Power Series; Harmonic Functions; Laurent Series and Residua; Applications of the Calculus of Residua; Index.
(7720 views)
Book cover: Lectures on The Theory of Functions of Several Complex VariablesLectures on The Theory of Functions of Several Complex Variables
by - Tata Institute of Fundamental Research
Contents: Cauchy's formula and elementary consequences; Reinhardt domains and circular domains; Complex analytic manifolds; Analytic Continuation; Envelopes of Holomorphy; Domains of Holomorphy - Convexity Theory; d''-cohomology on the cube; etc.
(7009 views)
Book cover: Complex Analysis on Riemann SurfacesComplex Analysis on Riemann Surfaces
by - Harvard University
Contents: Maps between Riemann surfaces; Sheaves and analytic continuation; Algebraic functions; Holomorphic and harmonic forms; Cohomology of sheaves; Cohomology on a Riemann surface; Riemann-Roch; Serre duality; Maps to projective space; etc.
(10574 views)
Book cover: Complex AnalysisComplex Analysis
by - Kobenhavns Universitet
Contents: Holomorphic functions; Contour integrals and primitives; The theorems of Cauchy; Applications of Cauchy's integral formula; Zeros and isolated singularities; The calculus of residues; The maximum modulus principle; Moebius transformations.
(3094 views)