Vector Analysis Notes
by Matthew Hutton
Publisher: matthewhutton.com 2006
Number of pages: 63
Description:
Contents: Introduction; The real thing; Line Integrals; Gradient Vector Fields; Surface Integrals; Divergence of Vector Fields; Gauss Divergence Theorem; Integration by Parts; Green's Theorem; Stokes Theorem; Spherical Coordinates; Complex Differentation; Complex power series; Holomorphic Functions; Complex Integration; Cauchy's theorem; Cauchy Integral Formula; Real Integrals; Power Series for holomorphic functions; Real Sums.
Download or read it online for free here:
Download link
(1.4MB, PDF)
Similar books

by Tevian Dray, Corinne A. Manogue - Oregon State University
Contents: Chapter 1: Coordinates and Vectors; Chapter 2: Multiple Integrals; Chapter 3: Vector Integrals; Chapter 4: Partial Derivatives; Chapter 5: Gradient; Chapter 6: Other Vector Derivatives; Chapter 7: Power Series; Chapter 8: Delta Functions.
(10755 views)

by James Byrnie Shaw - D. Van Nostrand company
Every physical term beyond mere elementary terms is carefully defined. On the other hand for the physical student there will be found a large collection of examples and exercises which will show him the utility of the mathematical methods.
(9361 views)

by Frank Jones - Rice University
The goal is to achieve a thorough understanding of vector calculus, including both problem solving and theoretical aspects. The orientation of the course is toward the problem aspects, though we go into great depth concerning the theory.
(13761 views)

by Ray M. Bowen, C.-C. Wang
The textbook presents introductory concepts of vector and tensor analysis, suitable for a one-semester course. Volume II discusses Euclidean Manifolds followed by the analytical and geometrical aspects of vector and tensor fields.
(17884 views)