Logo

An Introduction to Tensors for Students of Physics and Engineering

Small book cover: An Introduction to Tensors for Students of Physics and Engineering

An Introduction to Tensors for Students of Physics and Engineering
by

Publisher: Glenn Research Center
Number of pages: 29

Description:
The book is intended to serve as a bridge from the point where most undergraduate students 'leave off' in their studies of mathematics to the place where most texts on tensor analysis begin. A basic knowledge of vectors, matrices, and physics is assumed. A semi-intuitive approach to those notions underlying tensor analysis is given via scalars, vectors, dyads, triads, and similar higher-order vector products.

Download or read it online for free here:
Download link
(330KB, PDF)

Similar books

Book cover: Quick Introduction to Tensor AnalysisQuick Introduction to Tensor Analysis
by - Samizdat Press
The author gives only a draft of tensor theory, he formulates definitions and theorems and gives basic ideas and formulas. Proving consistence of definitions, deriving formulas, proving theorems or completing details to proofs is left to the reader.
(11511 views)
Book cover: Tensor AnalysisTensor Analysis
by - Princeton Univ Pr
The lecture notes for the first part of a one-term course on differential geometry given at Princeton in the spring of 1967. They are an expository account of the formal algebraic aspects of tensor analysis using both modern and classical notations.
(13941 views)
Book cover: Tensors and RelativityTensors and Relativity
by
Contents: the special theory of relativity, vectors and tensors in special relativity, conceptual basis of general relativity, curved space time and general relativity, Einstein's field equations, Schwarzschild's solution.
(12109 views)
Book cover: Symbolic Tensor Calculus on Manifolds: a SageMath ImplementationSymbolic Tensor Calculus on Manifolds: a SageMath Implementation
by - arXiv.org
These lecture notes present a method for symbolic tensor calculus that runs on fully specified smooth manifolds (described by an atlas), that is not limited to a single coordinate chart or vector frame, and runs even on non-parallelizable manifolds.
(1368 views)