Logo

Introduction to Vectors and Tensors Volume 2: Vector and Tensor Analysis

Small book cover: Introduction to Vectors and Tensors Volume 2: Vector and Tensor Analysis

Introduction to Vectors and Tensors Volume 2: Vector and Tensor Analysis
by


ISBN/ASIN: 0306375095
Number of pages: 246

Description:
The textbook presents introductory concepts of vector and tensor analysis. Volume II begins with a discussion of Euclidean Manifolds which leads to a development of the analytical and geometrical aspects of vector and tensor fields. We have not included a discussion of general differentiable manifolds. However, we have included a chapter on vector and tensor fields defined on Hypersurfaces in a Euclidean Manifold.

Home page url

Download or read it online for free here:
Download link
(1.2MB, PDF)

Similar books

Book cover: The Geometry of Vector CalculusThe Geometry of Vector Calculus
by - Oregon State University
Contents: Chapter 1: Coordinates and Vectors; Chapter 2: Multiple Integrals; Chapter 3: Vector Integrals; Chapter 4: Partial Derivatives; Chapter 5: Gradient; Chapter 6: Other Vector Derivatives; Chapter 7: Power Series; Chapter 8: Delta Functions.
(8372 views)
Book cover: Vector Analysis and the Theory of RelativityVector Analysis and the Theory of Relativity
by - Johns Hopkins press
This monograph is the outcome of lectures delivered to the graduate department of mathematics of The Johns Hopkins University. Considerations of space have made it somewhat condensed in form, but the mode of presentation is sufficiently novel.
(11261 views)
Book cover: Vector Calculus: CourseVector Calculus: Course
by
This is a two-semester course in n-dimensional calculus with a review of the necessary linear algebra. It covers the derivative, the integral, and a variety of applications. An emphasis is made on the coordinate free, vector analysis.
(7248 views)
Book cover: Vector Analysis and QuaternionsVector Analysis and Quaternions
by - John Wiley & Sons
Contents: Addition of Coplanar Vectors; Products of Coplanar Vectors; Coaxial Quaternions; Addition of Vectors in Space; Product of Two Vectors; Product of Three Vectors; Composition of Quantities; Spherical Trigonometry; Composition of Rotations.
(11845 views)