Introduction to Vectors and Tensors Volume 2: Vector and Tensor Analysis

Small book cover: Introduction to Vectors and Tensors Volume 2: Vector and Tensor Analysis

Introduction to Vectors and Tensors Volume 2: Vector and Tensor Analysis

ISBN/ASIN: 0306375095
Number of pages: 246

The textbook presents introductory concepts of vector and tensor analysis. Volume II begins with a discussion of Euclidean Manifolds which leads to a development of the analytical and geometrical aspects of vector and tensor fields. We have not included a discussion of general differentiable manifolds. However, we have included a chapter on vector and tensor fields defined on Hypersurfaces in a Euclidean Manifold.

Home page url

Download or read it online for free here:
Download link
(1.2MB, PDF)

Similar books

Book cover: Vector Analysis and QuaternionsVector Analysis and Quaternions
by - John Wiley & Sons
Contents: Addition of Coplanar Vectors; Products of Coplanar Vectors; Coaxial Quaternions; Addition of Vectors in Space; Product of Two Vectors; Product of Three Vectors; Composition of Quantities; Spherical Trigonometry; Composition of Rotations.
Book cover: Vector Calculus, with Applications to PhysicsVector Calculus, with Applications to Physics
by - D. Van Nostrand company
Every physical term beyond mere elementary terms is carefully defined. On the other hand for the physical student there will be found a large collection of examples and exercises which will show him the utility of the mathematical methods.
Book cover: The Geometry of Vector CalculusThe Geometry of Vector Calculus
by - Oregon State University
Contents: Chapter 1: Coordinates and Vectors; Chapter 2: Multiple Integrals; Chapter 3: Vector Integrals; Chapter 4: Partial Derivatives; Chapter 5: Gradient; Chapter 6: Other Vector Derivatives; Chapter 7: Power Series; Chapter 8: Delta Functions.
Book cover: Calculus of Differential Forms: CourseCalculus of Differential Forms: Course
by - Intelligent Perception
This is a two-semester course in n-dimensional calculus. An emphasis is made on the coordinate free, vector analysis. Contents: Vector calculus; Continuous differential forms; Integration of differential forms; Manifolds and differential forms.