**Elements of the Theory of Functions of a Complex Variable**

by G.E. Fisher, I.J. Schwatt

**Publisher**: Philadelphia G.E. Fisher 1896**ISBN/ASIN**: 1517046181**Number of pages**: 312

**Description**:

Contents: Geometric representation of imaginary quantities; Functions of a complex variable in general; Multiform functions; Integrals with complex variables; The logarithmic and exponential functions; General properties of functions; Infinite and infinitesimal values of functions; Integrals; Simply and multiply connected surfaces; Moduli of periodicity.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Elliptic Functions and Elliptic Curves**

by

**Jan Nekovar**-

**Institut de Mathematiques de Jussieu**

Contents: Introduction; Abel's Method; A Crash Course on Riemann Surfaces; Cubic curves; Elliptic functions; Theta functions; Construction of elliptic functions; Lemniscatology or Complex Multiplication by Z[i]; Group law on smooth cubic curves.

(

**6590**views)

**Lectures on the Theory of Algebraic Functions of One Variable**

by

**M. Deuring**-

**Tata Institute of Fundamental Research**

We shall be dealing in these lectures with the algebraic aspects of the theory of algebraic functions of one variable. Since an algebraic function w(z) is defined by f(z,w)=0, the study of such functions should be possible by algebraic methods.

(

**7608**views)

**Lectures on Stratification of Complex Analytic Sets**

by

**M.-H. Schwartz**-

**Tata Institute of Fundamental Research**

Contents: Preliminaries; Some theorems on stratification; Whitney's Theorems (Tangent Cones, Wings, The singular set Sa); Whitney Stratifications and pseudofibre bundles (Pseudo fibre spaces, Obstructions in pseudo-fibrations, etc.).

(

**7255**views)

**Complex Analysis**

by

**C. McMullen**-

**Harvard University**

This course covers some basic material on both the geometric and analytic aspects of complex analysis in one variable. Prerequisites: Background in real analysis and basic differential topology, and a first course in complex analysis.

(

**10980**views)