Logo

Dynamical and Hamiltonian Formulation of General Relativity

Small book cover: Dynamical and Hamiltonian Formulation of General Relativity

Dynamical and Hamiltonian Formulation of General Relativity
by

Publisher: arXiv.org
Number of pages: 76

Description:
This contribution introduces the reader to the reformulation of Einstein's field equations of General Relativity as a constrained evolutionary system of Hamiltonian type and discusses some of its uses, together with some technical and conceptual aspects. Attempts were made to keep the presentation self contained and accessible to first-year graduate students.

Home page url

Download or read it online for free here:
Download link
(1.1MB, PDF)

Similar books

Book cover: General RelativityGeneral Relativity
by - lightandmatter.com
This is an undergraduate textbook on general relativity. It is well adapted for self-study, and answers are given in the back of the book for almost all the problems. The ratio of conceptual to mathematical problems is higher than in most books.
(9287 views)
Book cover: Introduction to the Theory of Black HolesIntroduction to the Theory of Black Holes
by - Utrecht University
Contents: The Metric of Space and Time; Curved coordinates; A short introduction to General Relativity; Gravity; The Schwarzschild Solution; The Chandrasekhar Limit; Gravitational Collapse; The Reissner-Nordstrom Solution; Horizons; and more.
(19944 views)
Book cover: Partial Differential Equations of PhysicsPartial Differential Equations of Physics
by - arXiv
All partial differential equations that describe physical phenomena in space-time can be cast into a universal quasilinear, first-order form. We describe some broad features of systems of differential equations so formulated.
(12526 views)
Book cover: Space - Time - MatterSpace - Time - Matter
by - Methuen & Co.
A classic of physics -- the first systematic presentation of Einstein's theory of relativity. Long one of the standard texts in the field, this excellent introduction probes deeply into Einstein's general relativity, gravitational waves and energy.
(5826 views)