Logo

Dynamical and Hamiltonian Formulation of General Relativity

Small book cover: Dynamical and Hamiltonian Formulation of General Relativity

Dynamical and Hamiltonian Formulation of General Relativity
by

Publisher: arXiv.org
Number of pages: 76

Description:
This contribution introduces the reader to the reformulation of Einstein's field equations of General Relativity as a constrained evolutionary system of Hamiltonian type and discusses some of its uses, together with some technical and conceptual aspects. Attempts were made to keep the presentation self contained and accessible to first-year graduate students.

Home page url

Download or read it online for free here:
Download link
(1.1MB, PDF)

Similar books

Book cover: Treatise on Differential Geometry and its role in Relativity TheoryTreatise on Differential Geometry and its role in Relativity Theory
by - arXiv.org
These notes will be helpful to undergraduate and postgraduate students in theoretical physics and in applied mathematics. Modern terminology in differential geometry has been discussed in the book with the motivation of geometrical way of thinking.
(3457 views)
Book cover: Advanced General RelativityAdvanced General Relativity
by - Google Sites
Topics include: Asymptotic structure of spacetime, conformal diagrams, null surfaces, Raychaudhury equation, black holes, the holographic principle, singularity theorems, Einstein-Hilbert action, energy-momentum tensor, Noether's theorem, etc.
(12712 views)
Book cover: The Mathematical Theory of RelativityThe Mathematical Theory of Relativity
by - Cambridge University Press
Sir Arthur Eddington here formulates mathematically his conception of the world of physics derived from the theory of relativity. The argument is developed in a form which throws light on the origin and significance of the great laws of physics.
(6294 views)
Book cover: Partial Differential Equations of PhysicsPartial Differential Equations of Physics
by - arXiv
All partial differential equations that describe physical phenomena in space-time can be cast into a universal quasilinear, first-order form. We describe some broad features of systems of differential equations so formulated.
(16641 views)