Semi-Riemann Geometry and General Relativity
by Shlomo Sternberg
2003
Number of pages: 251
Description:
This book represents course notes for a one semester course at the undergraduate level giving an introduction to Riemannian geometry and its principal physical application, Einstein’s theory of general relativity. The background assumed is a good grounding in linear algebra and in advanced calculus, preferably in the language of differential forms.
Download or read it online for free here:
Download link
(1MB, PDF)
Similar books
Riemann Surfaces, Dynamics and Geometry
by Curtis McMullen - Harvard University
This course will concern the interaction between: hyperbolic geometry in dimensions 2 and 3, the dynamics of iterated rational maps, and the theory of Riemann surfaces and their deformations. Intended for advanced graduate students.
(14862 views)
by Curtis McMullen - Harvard University
This course will concern the interaction between: hyperbolic geometry in dimensions 2 and 3, the dynamics of iterated rational maps, and the theory of Riemann surfaces and their deformations. Intended for advanced graduate students.
(14862 views)
Complex Analysis on Riemann Surfaces
by Curtis McMullen - Harvard University
Contents: Maps between Riemann surfaces; Sheaves and analytic continuation; Algebraic functions; Holomorphic and harmonic forms; Cohomology of sheaves; Cohomology on a Riemann surface; Riemann-Roch; Serre duality; Maps to projective space; etc.
(14804 views)
by Curtis McMullen - Harvard University
Contents: Maps between Riemann surfaces; Sheaves and analytic continuation; Algebraic functions; Holomorphic and harmonic forms; Cohomology of sheaves; Cohomology on a Riemann surface; Riemann-Roch; Serre duality; Maps to projective space; etc.
(14804 views)
Riemannian Geometry
by Richard L. Bishop - arXiv
These notes on Riemannian geometry use the bases bundle and frame bundle, as in Geometry of Manifolds, to express the geometric structures. It starts with the definition of Riemannian and semi-Riemannian structures on manifolds.
(10451 views)
by Richard L. Bishop - arXiv
These notes on Riemannian geometry use the bases bundle and frame bundle, as in Geometry of Manifolds, to express the geometric structures. It starts with the definition of Riemannian and semi-Riemannian structures on manifolds.
(10451 views)
Medians and Means in Riemannian Geometry: Existence, Uniqueness and Computation
by M. Arnaudon, F. Barbaresco, L. Yang - arXiv
This paper is a short summary of our recent work on the medians and means of probability measures in Riemannian manifolds. The existence and uniqueness results of local medians are given. We propose a subgradient algorithm and prove its convergence.
(10419 views)
by M. Arnaudon, F. Barbaresco, L. Yang - arXiv
This paper is a short summary of our recent work on the medians and means of probability measures in Riemannian manifolds. The existence and uniqueness results of local medians are given. We propose a subgradient algorithm and prove its convergence.
(10419 views)