**Semi-Riemann Geometry and General Relativity**

by Shlomo Sternberg

2003**Number of pages**: 251

**Description**:

This book represents course notes for a one semester course at the undergraduate level giving an introduction to Riemannian geometry and its principal physical application, Einsteinâ€™s theory of general relativity. The background assumed is a good grounding in linear algebra and in advanced calculus, preferably in the language of differential forms.

Download or read it online for free here:

**Download link**

(1MB, PDF)

## Similar books

**An Introduction to Riemannian Geometry with Applications to Mechanics and Relativity**

by

**Leonor Godinho, Jose Natario**

Contents: Differentiable Manifolds; Differential Forms; Riemannian Manifolds; Curvature; Geometric Mechanics; Relativity (Galileo Spacetime, Special Relativity, The Cartan Connection, General Relativity, The Schwarzschild Solution).

(

**6296**views)

**Holonomy Groups in Riemannian Geometry**

by

**Andrew Clarke, Bianca Santoro**-

**arXiv**

The holonomy group is one of the fundamental analytical objects that one can define on a Riemannian manfold. These notes provide a first introduction to the main general ideas on the study of the holonomy groups of a Riemannian manifold.

(

**6115**views)

**A Course in Riemannian Geometry**

by

**David R. Wilkins**-

**Trinity College, Dublin**

From the table of contents: Smooth Manifolds; Tangent Spaces; Affine Connections on Smooth Manifolds; Riemannian Manifolds; Geometry of Surfaces in R3; Geodesics in Riemannian Manifolds; Complete Riemannian Manifolds; Jacobi Fields.

(

**8909**views)

**An Introduction to Riemannian Geometry**

by

**Sigmundur Gudmundsson**-

**Lund University**

The main purpose of these lecture notes is to introduce the beautiful theory of Riemannian Geometry. Of special interest are the classical Lie groups allowing concrete calculations of many of the abstract notions on the menu.

(

**11481**views)