Logo

Classical and Quantum Mechanics via Lie algebras

Small book cover: Classical and Quantum Mechanics via Lie algebras

Classical and Quantum Mechanics via Lie algebras
by

Publisher: arXiv
Number of pages: 503

Description:
The goal of this book is to present classical mechanics, quantum mechanics, and statistical mechanics in an almost completely algebraic setting, thereby introducing mathematicians, physicists, and engineers to the ideas relating classical and quantum mechanics with Lie algebras and Lie groups. The book emphasizes the closeness of classical and quantum mechanics, and the material is selected in a way to make this closeness as apparent as possible.

Home page url

Download or read it online for free here:
Download link
(2.4MB, PDF)

Similar books

Book cover: Differential Equations of Mathematical PhysicsDifferential Equations of Mathematical Physics
by - arXiv
These lecture notes give an overview of how to view and solve differential equations that are common in physics. They cover Hamilton's equations, variations of the Schroedinger equation, the heat equation, the wave equation and Maxwell's equations.
(9332 views)
Book cover: Physics, Topology, Logic and Computation: A Rosetta StonePhysics, Topology, Logic and Computation: A Rosetta Stone
by - arXiv
There is extensive network of analogies between physics, topology, logic and computation. In this paper we make these analogies precise using the concept of 'closed symmetric monoidal category'. We assume no prior knowledge of category theory.
(11075 views)
Book cover: Navier-Stokes Equations: On the Existence and the Search Method for Global SolutionsNavier-Stokes Equations: On the Existence and the Search Method for Global Solutions
by - MiC
In this book we formulate and prove the variational extremum principle for viscous incompressible and compressible fluid, from which principle follows that the Navier-Stokes equations represent the extremum conditions of a certain functional.
(10780 views)
Book cover: Lectures on Integrable Hamiltonian SystemsLectures on Integrable Hamiltonian Systems
by - arXiv
We consider integrable Hamiltonian systems in a general setting of invariant submanifolds which need not be compact. This is the case a global Kepler system, non-autonomous integrable Hamiltonian systems and systems with time-dependent parameters.
(8913 views)