Differential Geometry
by Balazs Csikos
Publisher: Eötvös Loránd University 2010
Number of pages: 123
Description:
Contents: Basic Structures on Rn, Length of Curves; Curvatures of a Curve; Plane Curves; 3D Curves; Hypersurfaces; Surfaces in the 3-dimensional space; The fundamental equations of hypersurface theory; Topological and Differentiable Manifolds; The Tangent Bundle; The Lie Algebra of Vector Fields; Differentiation of Vector Fields; Curvature; Geodesics.
Download or read it online for free here:
Download link
(multiple PDF files)
Similar books
Notes on Differential Geometry
by Noel J. Hicks - Van Nostrand
A concise introduction to differential geometry. The ten chapters of Hicks' book contain most of the mathematics that has become the standard background for not only differential geometry, but also much of modern theoretical physics and cosmology.
(15639 views)
by Noel J. Hicks - Van Nostrand
A concise introduction to differential geometry. The ten chapters of Hicks' book contain most of the mathematics that has become the standard background for not only differential geometry, but also much of modern theoretical physics and cosmology.
(15639 views)
Differential Geometry: Lecture Notes
by Dmitri Zaitsev - Trinity College Dublin
From the table of contents: Chapter 1. Introduction to Smooth Manifolds; Chapter 2. Basic results from Differential Topology; Chapter 3. Tangent spaces and tensor calculus; Tensors and differential forms; Chapter 4. Riemannian geometry.
(11886 views)
by Dmitri Zaitsev - Trinity College Dublin
From the table of contents: Chapter 1. Introduction to Smooth Manifolds; Chapter 2. Basic results from Differential Topology; Chapter 3. Tangent spaces and tensor calculus; Tensors and differential forms; Chapter 4. Riemannian geometry.
(11886 views)
A Course Of Differential Geometry
by John Edward Campbell - Clarendon Press
Contents: Tensor theory; The ground form when n=2; Geodesics in two-way space; Two-way space as a locus in Euclidean space; Deformation of a surface and congruences; Curves in Euclidean space and on a surface; The ruled surface; Minimal surface; etc.
(7507 views)
by John Edward Campbell - Clarendon Press
Contents: Tensor theory; The ground form when n=2; Geodesics in two-way space; Two-way space as a locus in Euclidean space; Deformation of a surface and congruences; Curves in Euclidean space and on a surface; The ruled surface; Minimal surface; etc.
(7507 views)
Differentiable Manifolds
by Nigel Hitchin
The historical driving force of the theory of manifolds was General Relativity, where the manifold is four-dimensional spacetime, wormholes and all. This text is occupied with the theory of differential forms and the exterior derivative.
(19637 views)
by Nigel Hitchin
The historical driving force of the theory of manifolds was General Relativity, where the manifold is four-dimensional spacetime, wormholes and all. This text is occupied with the theory of differential forms and the exterior derivative.
(19637 views)