Diffeomorphisms of Elliptic 3-Manifolds
by S. Hong, J. Kalliongis, D. McCullough, J. H. Rubinstein
Publisher: arXiv 2011
Number of pages: 185
Description:
The elliptic 3-manifolds are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, that is, those that have finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to the diffeomorphism group of M is a homotopy equivalence.
Download or read it online for free here:
Download link
(1.6MB, PDF)
Similar books

by Benson Farb, Dan Margalit - Princeton University Press
Our goal in this book is to explain as many important theorems, examples, and techniques as possible, as quickly and directly as possible, while at the same time giving (nearly) full details and keeping the text (nearly) selfcontained.
(10022 views)

by F.T. Farrell - Springer
This book is an introduction to the topological rigidity theorem for compact non-positively curved Riemannian manifolds. It contains a quick informal account of the background material from surgery theory and controlled topology prerequesite.
(6716 views)

by Louis H. Kauffman - arXiv
This paper is a survey of knot theory and invariants of knots and links from the point of view of categories of diagrams. The topics range from foundations of knot theory to virtual knot theory and topological quantum field theory.
(5909 views)

by Bruce Hughes, Andrew Ranicki - Cambridge University Press
The book gathers together the main strands of the theory of ends of manifolds from the last thirty years and presents a unified and coherent treatment of them. It also contains authoritative expositions of mapping tori and telescopes.
(8397 views)