Logo

Introduction to Probability, Statistics, and Random Processes

Large book cover: Introduction to Probability, Statistics, and Random Processes

Introduction to Probability, Statistics, and Random Processes
by

Publisher: Kappa Research, LLC
ISBN/ASIN: 0990637204
ISBN-13: 9780990637202
Number of pages: 744

Description:
This book introduces students to probability, statistics, and stochastic processes. It can be used by both students and practitioners in engineering, various sciences, finance, and other related fields. It provides a clear and intuitive approach to these topics while maintaining mathematical accuracy.

Home page url

Download or read it online for free here:
Read online
(online html)

Similar books

Book cover: Design of Comparative ExperimentsDesign of Comparative Experiments
by - Cambridge University Press
This book develops a coherent framework for thinking about factors that affect experiments and their relationships, including the use of Hasse diagrams. The book is ideal for advanced undergraduate and beginning graduate courses.
(15454 views)
Book cover: Inverse Problem Theory and Methods for Model Parameter EstimationInverse Problem Theory and Methods for Model Parameter Estimation
by - SIAM
The first part deals with discrete inverse problems with a finite number of parameters, while the second part deals with general inverse problems. The book for scientists and applied mathematicians facing the interpretation of experimental data.
(10694 views)
Book cover: Introduction Probaility and StatisticsIntroduction Probaility and Statistics
by - University of Southern Maine
Topics: Data Analysis; Probability; Random Variables and Discrete Distributions; Continuous Probability Distributions; Sampling Distributions; Point and Interval Estimation; Large Sample Estimation; Large-Sample Tests of Hypothesis; etc.
(20838 views)
Book cover: Markov Chains and Mixing TimesMarkov Chains and Mixing Times
by - American Mathematical Society
An introduction to the modern approach to the theory of Markov chains. The main goal of this approach is to determine the rate of convergence of a Markov chain to the stationary distribution as a function of the size and geometry of the state space.
(8587 views)