Applied Nonparametric Regression
by Wolfgang Härdle
Publisher: Cambridge University Press 1992
ISBN/ASIN: 0521429501
ISBN-13: 9780521429504
Number of pages: 433
Description:
This book represents an optimally estimated common thread for the numerous topics and results in the fast-growing area of nonparametric regression. The user-friendly approach taken by the author has successfully smoothed out most of the formidable asymptotic elaboration in developing the theory. This is an excellent collection for both beginners and experts.
Download or read it online for free here:
Download link
(4.4MB, PDF)
Similar books
Stochastic Integration and Stochastic Differential Equations
by Klaus Bichteler - University of Texas
Written for graduate students of mathematics, physics, electrical engineering, and finance. The students are expected to know the basics of point set topology up to Tychonoff's theorem, general integration theory, and some functional analysis.
(15177 views)
by Klaus Bichteler - University of Texas
Written for graduate students of mathematics, physics, electrical engineering, and finance. The students are expected to know the basics of point set topology up to Tychonoff's theorem, general integration theory, and some functional analysis.
(15177 views)
Basic Data Analysis and More: A Guided Tour Using Python
by O. Melchert - arXiv
In these lecture notes, a selection of frequently required statistical tools will be introduced and illustrated. They allow to post-process data that stem from, e.g., large-scale numerical simulations (aka sequence of random experiments).
(15769 views)
by O. Melchert - arXiv
In these lecture notes, a selection of frequently required statistical tools will be introduced and illustrated. They allow to post-process data that stem from, e.g., large-scale numerical simulations (aka sequence of random experiments).
(15769 views)
Bayesian Field Theory
by J. C. Lemm - arXiv.org
A particular Bayesian field theory is defined by combining a likelihood model, providing a probabilistic description of the measurement process, and a prior model, providing the information necessary to generalize from training to non-training data.
(7673 views)
by J. C. Lemm - arXiv.org
A particular Bayesian field theory is defined by combining a likelihood model, providing a probabilistic description of the measurement process, and a prior model, providing the information necessary to generalize from training to non-training data.
(7673 views)
Bayesian Spectrum Analysis and Parameter Estimation
by G. Larry Bretthorst - Springer
This work is a research document on the application of probability theory to the parameter estimation problem. The people who will be interested in this material are physicists, economists, and engineers who have to deal with data on a daily basis.
(18826 views)
by G. Larry Bretthorst - Springer
This work is a research document on the application of probability theory to the parameter estimation problem. The people who will be interested in this material are physicists, economists, and engineers who have to deal with data on a daily basis.
(18826 views)