Logo

Applied Nonparametric Regression

Large book cover: Applied Nonparametric Regression

Applied Nonparametric Regression
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521429501
ISBN-13: 9780521429504
Number of pages: 433

Description:
This book represents an optimally estimated common thread for the numerous topics and results in the fast-growing area of nonparametric regression. The user-friendly approach taken by the author has successfully smoothed out most of the formidable asymptotic elaboration in developing the theory. This is an excellent collection for both beginners and experts.

Download or read it online for free here:
Download link
(4.4MB, PDF)

Similar books

Book cover: Bayesian Spectrum Analysis and Parameter EstimationBayesian Spectrum Analysis and Parameter Estimation
by - Springer
This work is a research document on the application of probability theory to the parameter estimation problem. The people who will be interested in this material are physicists, economists, and engineers who have to deal with data on a daily basis.
(12688 views)
Book cover: Probability and StatisticsProbability and Statistics
- UCLA
This book is developed as a free, collaborative and interactive learning environment for elementary probability and statistics education. The book blends information technology, scientific techniques and modern pedagogical concepts.
(9817 views)
Book cover: Advanced Data Analysis from an Elementary Point of ViewAdvanced Data Analysis from an Elementary Point of View
by - Cambridge University Press
This is a draft textbook on data analysis methods, intended for a one-semester course for advance undergraduate students who have already taken classes in probability, mathematical statistics, and linear regression. It began as the lecture notes.
(5544 views)
Book cover: Probability, Statistics and Stochastic ProcessesProbability, Statistics and Stochastic Processes
by
Contents: Probability (Probability Calculus, Random Variables, Discrete and Continuous Distributions); Statistics (Handling of Data, Sampling, Estimation, Hypothesis Testing); Stochastic Processes (Markov Processes, Continuous-Time Processes).
(7592 views)