Logo

Metric and Topological Spaces

Small book cover: Metric and Topological Spaces

Metric and Topological Spaces
by

Publisher: University of Cambridge
Number of pages: 109

Description:
Contents: Preface; What is a metric?; Examples of metric spaces; Continuity and open sets for metric spaces; Closed sets for metric spaces; Topological spaces; Interior and closure; More on topological structures; Hausdorff spaces; Compactness; Products of compact spaces; Compactness in metric spaces; Connectedness; The language of neighbourhoods; Final remarks and books.

Home page url

Download or read it online for free here:
Download link
(620KB, PDF)

Similar books

Book cover: Real Variables: With Basic Metric Space TopologyReal Variables: With Basic Metric Space Topology
by - Institute of Electrical & Electronics Engineering
A text for a first course in real variables for students of engineering, physics, and economics, who need to know real analysis in order to cope with the professional literature. The subject matter is fundamental for more advanced mathematical work.
(55330 views)
Book cover: Homeomorphisms in AnalysisHomeomorphisms in Analysis
by - American Mathematical Society
This book features the interplay of two main branches of mathematics: topology and real analysis. The text covers Lebesgue measurability, Baire classes of functions, differentiability, the Blumberg theorem, various theorems on Fourier series, etc.
(10425 views)
Book cover: Nonstandard Analysis in TopologyNonstandard Analysis in Topology
by - arXiv
We present Nonstandard Analysis in the framework of the superstructure of a given infinite set. We also present several applications of this axiomatic approach to point-set topology. Some of the topological topics seem to be new in the literature.
(6357 views)
Book cover: Point-Set Topology: CoursePoint-Set Topology: Course
by - Intelligent Perception
This is an introductory, one semester course on point-set topology and applications. Topics: topologies, separation axioms, connectedness, compactness, continuity, metric spaces. Intended for advanced undergraduate and beginning graduate students.
(4078 views)