Logo

Introduction To Machine Learning

Large book cover: Introduction To Machine Learning

Introduction To Machine Learning
by


Number of pages: 209

Description:
This book surveys many of the important topics in machine learning circa 1996. The intention was to pursue a middle ground between theory and practice. This book concentrates on the important ideas in machine learning -- it is neither a handbook of practice nor a compendium of theoretical proofs. The goal was to give the reader sufficient preparation to make the extensive literature on machine learning accessible.

Home page url

Download or read it online for free here:
Download link
(2.6MB, PDF)

Similar books

Book cover: Machine Learning and Data Mining: Lecture NotesMachine Learning and Data Mining: Lecture Notes
by - University of Toronto
Contents: Introduction to Machine Learning; Linear Regression; Nonlinear Regression; Quadratics; Basic Probability Theory; Probability Density Functions; Estimation; Classification; Gradient Descent; Cross Validation; Bayesian Methods; and more.
(10483 views)
Book cover: Inductive Logic Programming: Theory and MethodsInductive Logic Programming: Theory and Methods
by - ScienceDirect
Inductive Logic Programming is a new discipline which investigates the inductive construction of first-order clausal theories from examples and background knowledge. The authors survey the most important theories and methods of this new field.
(36565 views)
Book cover: Bayesian Reasoning and Machine LearningBayesian Reasoning and Machine Learning
by - Cambridge University Press
The book is designed for final-year undergraduate students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basics to advanced techniques within the framework of graphical models.
(23379 views)
Book cover: Machine Learning, Neural and Statistical ClassificationMachine Learning, Neural and Statistical Classification
by - Ellis Horwood
The book provides a review of different approaches to classification, compares their performance on challenging data-sets, and draws conclusions on their applicability to realistic industrial problems. A wide variety of approaches has been taken.
(28921 views)