**Lagrangian Solid Modeling**

by Matthew Marko

**Publisher**: viXra 2017**Number of pages**: 114

**Description**:

The author demonstrates a stable Lagrangian solid modeling method, tracking the interactions of solid mass particles, rather than using a meshed grid. This numerical method avoids the problem of tensile instability often seen with Smooth Particle Applied Mechanics by having the solid particles apply stresses expected with Hooke's law, as opposed to using a smoothing function for neighboring solid particles.

Download or read it online for free here:

**Download link**

(13MB, PDF)

## Similar books

**Fluid Flow at Branching Junctions**

by

**Taha Sochi**-

**arXiv**

The flow of fluids at branching junctions plays important roles in most biological flow systems. The present paper highlights some key issues related to the flow of fluids at these junctions with special emphasis on the biological flow networks.

(

**7190**views)

**Introductory Fluid Mechanics**

by

**Simon J.A. Malham**-

**Heriot-Watt University**

Contents: Introduction; Fluid flow; Trajectories and streamlines; Conservation of mass; Balance of momentum; Transport theorem; Simple example flows; Kelvin's circulation theorem; Bernoulli's Theorem; Irrotational/potential flow; etc.

(

**4190**views)

**Introduction to Statistical Theory of Fluid Turbulence**

by

**Mahendra K. Verma**-

**arXiv**

Fluid and plasma flows exhibit complex random behaviour, called turbulence. This text is a brief introduction to the statistical theory of fluid turbulence, with emphasis on field-theoretic treatment of renormalized viscosity and energy fluxes.

(

**9426**views)

**The Secret of Sailing**

by

**Johan Hoffman, Johan Jansson, Claes Johnson**

This book presents a mathematical theory of sailing based on a combination of analysis and computation. This new theory is fundamentally different from that envisioned in the classical theories for lift in inviscid flow and for drag in viscous flow.

(

**10539**views)