Logo

Computational Turbulent Incompressible Flow

Large book cover: Computational Turbulent Incompressible Flow

Computational Turbulent Incompressible Flow
by

Publisher: Springer
ISBN/ASIN: 3540465316
ISBN-13: 9783540465317
Number of pages: 415

Description:
In this book we address mathematical modeling of turbulent fluid flow, and its many mysteries that have haunted scientist over the centuries; such as the dAlembert mystery of drag in an inviscid flow, the Sommerfeld mystery of transition to turbulence in shear flow, and the Loschmidt mystery of violation of the 2nd law of thermodynamics.

Home page url

Download or read it online for free here:
Download link
(22MB, PDF)

Similar books

Book cover: A Practical Introduction to Numerical HydrodynamicsA Practical Introduction to Numerical Hydrodynamics
by - Leiden University
An introduction to the field of numerical hydrodynamics. It will give you some insight in what is involved in such calculations. Numerical hydrodynamics is used in many parts of astrophysics. The applications we consider in this exercise are stellar.
(11915 views)
Book cover: Statistical Mechanics of Two-dimensional and Geophysical FlowsStatistical Mechanics of Two-dimensional and Geophysical Flows
by - arXiv
The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject.
(5802 views)
Book cover: Introduction to Statistical Theory of Fluid TurbulenceIntroduction to Statistical Theory of Fluid Turbulence
by - arXiv
Fluid and plasma flows exhibit complex random behaviour, called turbulence. This text is a brief introduction to the statistical theory of fluid turbulence, with emphasis on field-theoretic treatment of renormalized viscosity and energy fluxes.
(9415 views)
Book cover: An Introduction to Theoretical Fluid DynamicsAn Introduction to Theoretical Fluid Dynamics
by - New York University
This course will deal with a mathematical idealization of common fluids. The main idealization is embodied in the notion of a continuum and our 'fluids' will generally be identified with a certain connected set of points in 1, 2, or 3 dimensions.
(4983 views)