**An Introduction to Nonlinear Optimization Theory**

by Marius Durea, Radu Strugariu

**Publisher**: De Gruyter Open 2014**ISBN-13**: 9783110426045**Number of pages**: 328

**Description**:

The goal of this book is to present the main ideas and techniques in the field of continuous smooth and nonsmooth optimization. Starting with the case of differentiable data and the classical results on constrained optimization problems, and continuing with the topic of nonsmooth objects involved in optimization theory, the book concentrates on both theoretical and practical aspects of this field.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Optimal Stopping and Applications**

by

**Thomas S. Ferguson**-

**UCLA**

From the table of contents: Stopping Rule Problems; Finite Horizon Problems; The Existence of Optimal Rules; Applications. Markov Models; Monotone Stopping Rule Problems; Maximizing the Rate of Return; Bandit Problems; Solutions to the Exercises.

(

**7920**views)

**The Design of Approximation Algorithms**

by

**D. P. Williamson, D. B. Shmoys**-

**Cambridge University Press**

This book shows how to design approximation algorithms: efficient algorithms that find provably near-optimal solutions. It is organized around techniques for designing approximation algorithms, including greedy and local search algorithms.

(

**10539**views)

**Applied Mathematical Programming**

by

**S. Bradley, A. Hax, T. Magnanti**-

**Addison-Wesley**

This book shows you how to model a wide array of problems. Covered are topics such as linear programming, duality theory, sensitivity analysis, network/dynamic programming, integer programming, non-linear programming, and my favorite, etc.

(

**10962**views)

**Applied Mathematical Programming Using Algebraic Systems**

by

**Bruce A. McCarl, Thomas H. Spreen**-

**Texas A&M University**

This book is intended to both serve as a reference guide and a text for a course on Applied Mathematical Programming. The text concentrates upon conceptual issues, problem formulation, computerized problem solution, and results interpretation.

(

**7123**views)