Logo

Introduction to Vectors and Tensors Volume 1: Linear and Multilinear Algebra

Small book cover: Introduction to Vectors and Tensors Volume 1: Linear and Multilinear Algebra

Introduction to Vectors and Tensors Volume 1: Linear and Multilinear Algebra
by

Publisher: Springer
ISBN/ASIN: 0306375087
ISBN-13: 9780306375088
Number of pages: 314

Description:
This work represents our effort to present the basic concepts of vector and tensor analysis. Volume I begins with a brief discussion of algebraic structures followed by a rather detailed discussion of the algebra of vectors and tensors.

Home page url

Download or read it online for free here:
Download link
(1.3MB, PDF)

Similar books

Book cover: Lectures on Linear Algebra and MatricesLectures on Linear Algebra and Matrices
by - Texas A&M University
Contents: Vectors and Vector Spaces; Matrices and Linear Algebra; Eigenvalues and Eigenvectors; Unitary Matrices; Hermitian Theory; Normal Matrices; Factorization Theorems; Jordan Normal Form; Hermitian and Symmetric Matrices; Nonnegative Matrices.
(10492 views)
Book cover: Introduction to Linear BialgebraIntroduction to Linear Bialgebra
by - arXiv
This book introduced a new algebraic structure called linear bialgebra. We have ventured in this book to introduce new concepts like linear bialgebra and Smarandache neutrosophic linear bialgebra and also give the applications of these structures.
(8403 views)
Book cover: Templates for the Solution of Linear SystemsTemplates for the Solution of Linear Systems
by - Society for Industrial Mathematics
The book focuses on the use of iterative methods for solving large sparse systems of linear equations. General and reusable templates are introduced to meet the needs of both the traditional user and the high-performance specialist.
(11860 views)
Book cover: Differential Equations and Linear AlgebraDifferential Equations and Linear Algebra
by - Heriot-Watt University
From the table of contents: Linear second order ODEs; Homogeneous linear ODEs; Non-homogeneous linear ODEs; Laplace transforms; Linear algebraic equations; Matrix Equations; Linear algebraic eigenvalue problems; Systems of differential equations.
(5282 views)