Logo

Reinforcement Learning: An Introduction

Large book cover: Reinforcement Learning: An Introduction

Reinforcement Learning: An Introduction
by

Publisher: The MIT Press
ISBN/ASIN: 0262193981
ISBN-13: 9780262193986
Number of pages: 445

Description:
Reinforcement learning is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In this book, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.

Home page url

Download or read it online for free here:
Download link
(12MB, PDF)

Similar books

Book cover: Machine Learning and Data Mining: Lecture NotesMachine Learning and Data Mining: Lecture Notes
by - University of Toronto
Contents: Introduction to Machine Learning; Linear Regression; Nonlinear Regression; Quadratics; Basic Probability Theory; Probability Density Functions; Estimation; Classification; Gradient Descent; Cross Validation; Bayesian Methods; and more.
(6389 views)
Book cover: Boosting: Foundations and AlgorithmsBoosting: Foundations and Algorithms
by - The MIT Press
Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate 'rules of thumb'. A remarkably rich theory has evolved around boosting, with connections to a range of topics.
(3275 views)
Book cover: An Introduction to Statistical LearningAn Introduction to Statistical Learning
by - Springer
This book provides an introduction to statistical learning methods. It contains a number of R labs with detailed explanations on how to implement the various methods in real life settings and it is a valuable resource for a practicing data scientist.
(6388 views)
Book cover: Elements of Causal Inference: Foundations and Learning AlgorithmsElements of Causal Inference: Foundations and Learning Algorithms
by - The MIT Press
This book offers a self-contained and concise introduction to causal models and how to learn them from data. The book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from data ...
(2620 views)