An Introductory Study on Time Series Modeling and Forecasting
by Ratnadip Adhikari, R. K. Agrawal
Publisher: arXiv 2013
Number of pages: 67
Description:
The aim of this dissertation work is to present a concise description of some popular time series forecasting models used in practice, with their salient features. In this thesis, we have described three important classes of time series models, viz. the stochastic, neural networks and SVM based models, together with their inherent forecasting strengths and weaknesses.
Download or read it online for free here:
Download link
(880KB, PDF)
Similar books

by Nils J Nilsson
This book concentrates on the important ideas in machine learning, to give the reader sufficient preparation to make the extensive literature on machine learning accessible. The author surveys the important topics in machine learning circa 1996.
(24220 views)

by Alex Smola, S.V.N. Vishwanathan - Cambridge University Press
Over the past two decades Machine Learning has become one of the mainstays of information technology and a rather central part of our life. Smart data analysis will become even more pervasive as a necessary ingredient for technological progress.
(5637 views)

by Yoshua Bengio - Now Publishers
This book discusses the principles of learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models.
(4541 views)

by Max Welling - University of California Irvine
The book you see before you is meant for those starting out in the field of machine learning, who need a simple, intuitive explanation of some of the most useful algorithms that our field has to offer. A prelude to the more advanced text books.
(7226 views)