Logo

Information Theory, Inference, and Learning Algorithms

Large book cover: Information Theory, Inference, and Learning Algorithms

Information Theory, Inference, and Learning Algorithms
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521642981
ISBN-13: 9780521642989
Number of pages: 640

Description:
Information theory and inference, often taught separately, are here united in one entertaining textbook. These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: Entropy and Information TheoryEntropy and Information Theory
by - Springer
The book covers the theory of probabilistic information measures and application to coding theorems for information sources and noisy channels. This is an up-to-date treatment of traditional information theory emphasizing ergodic theory.
(11256 views)
Book cover: Lecture Notes on Network Information TheoryLecture Notes on Network Information Theory
by - arXiv
Network information theory deals with the fundamental limits on information flow in networks and optimal coding and protocols. These notes provide a broad coverage of key results, techniques, and open problems in network information theory.
(8803 views)
Book cover: Logic and InformationLogic and Information
by - ESSLLI
An introductory, comparative account of three mathematical approaches to information: the classical quantitative theory of Claude Shannon, a qualitative theory developed by Fred Dretske, and a qualitative theory introduced by Barwise and Perry.
(6013 views)
Book cover: Generalized Information Measures and Their ApplicationsGeneralized Information Measures and Their Applications
by - Universidade Federal de Santa Catarina
Contents: Shannon's Entropy; Information and Divergence Measures; Entropy-Type Measures; Generalized Information and Divergence Measures; M-Dimensional Divergence Measures and Their Generalizations; Unified (r,s)-Multivariate Entropies; etc.
(5638 views)