Information Theory, Inference, and Learning Algorithms
by David J. C. MacKay
Publisher: Cambridge University Press 2003
ISBN/ASIN: 0521642981
ISBN-13: 9780521642989
Number of pages: 640
Description:
Information theory and inference, often taught separately, are here united in one entertaining textbook. These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks.
Download or read it online for free here:
Download link
(multiple formats)
Similar books
by Alexander Shen - arXiv.org
Algorithmic information theory studies description complexity and randomness. This text covers the basic notions of algorithmic information theory: Kolmogorov complexity, Solomonoff universal a priori probability, effective Hausdorff dimension, etc.
(6727 views)
by Renato Renner - ETH Zurich
Processing of information is necessarily a physical process. It is not surprising that physics and the theory of information are inherently connected. Quantum information theory is a research area whose goal is to explore this connection.
(12750 views)
by Neri Merhav - arXiv
Lecture notes for a graduate course focusing on the relations between Information Theory and Statistical Physics. The course is aimed at EE graduate students in the area of Communications and Information Theory, or graduate students in Physics.
(13004 views)
by Venkatesan Guruswami, Atri Rudra, Madhu Sudan - University at Buffalo
Error-correcting codes are clever ways of representing data so that one can recover the original information even if parts of it are corrupted. The basic idea is to introduce redundancy so that the original information can be recovered ...
(9630 views)