**Information Theory, Inference, and Learning Algorithms**

by David J. C. MacKay

**Publisher**: Cambridge University Press 2003**ISBN/ASIN**: 0521642981**ISBN-13**: 9780521642989**Number of pages**: 640

**Description**:

Information theory and inference, often taught separately, are here united in one entertaining textbook. These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Algorithmic Information Theory**

by

**Peter D. Gruenwald, Paul M.B. Vitanyi**-

**CWI**

We introduce algorithmic information theory, also known as the theory of Kolmogorov complexity. We explain this quantitative approach to defining information and discuss the extent to which Kolmogorov's and Shannon's theory have a common purpose.

(

**5083**views)

**Logic and Information**

by

**Keith Devlin**-

**ESSLLI**

An introductory, comparative account of three mathematical approaches to information: the classical quantitative theory of Claude Shannon, a qualitative theory developed by Fred Dretske, and a qualitative theory introduced by Barwise and Perry.

(

**5627**views)

**Theory of Quantum Information**

by

**John Watrous**-

**University of Calgary**

The focus is on the mathematical theory of quantum information. We will begin with basic principles and methods for reasoning about quantum information, and then move on to a discussion of various results concerning quantum information.

(

**5770**views)

**Entropy and Information Theory**

by

**Robert M. Gray**-

**Springer**

The book covers the theory of probabilistic information measures and application to coding theorems for information sources and noisy channels. This is an up-to-date treatment of traditional information theory emphasizing ergodic theory.

(

**10872**views)