Logo

Theory of Symmetry and Ornament

Small book cover: Theory of Symmetry and Ornament

Theory of Symmetry and Ornament
by

Publisher: Matematicki Institut
ISBN/ASIN: 8680593176
ISBN-13: 9788680593173
Number of pages: 331

Description:
This work represents an attempt at a comparative analysis of the theory of discrete and visually presentable continuous symmetry groups in the plane E2 or in E2\{O}: Symmetry Groups of Rosettes, Friezes and Ornaments (Chapter 2), Similarity Symmetry Groups in E2 (Chapter 3), Conformal Symmetry Groups in E2\{O} (Chapter 4) and ornamental motifs found in ornamental art that satisfy the before mentioned forms of symmetry.

Home page url

Download or read it online for free here:
Read online
(online html)

Similar books

Book cover: Researches on Curves of the Second OrderResearches on Curves of the Second Order
by - Project Gutenberg
Researches on curves of the second order are given in this book, also on cones and spherical conics treated analytically, in which the tangencies of Apollonius are investigated, and general geometrical constructions deduced from analysis.
(7543 views)
Book cover: Euclid and His Twentieth Century RivalsEuclid and His Twentieth Century Rivals
by
Miller discusses the history of diagrams in Euclidean Geometry, develops a formal system for working with them, and concludes that they can be used rigorously. Miller also introduces a diagrammatic computer proof system, based on this formal system.
(1003 views)
Book cover: A Course of Pure Geometry: Properties of the Conic SectionsA Course of Pure Geometry: Properties of the Conic Sections
by - Cambridge University Press
The book does not assume any previous knowledge of the Conic Sections, which are here treated on the basis of the definition of them as the curves of projection of a circle. Many of the properties of the Conic Sections are proved quite simply.
(9333 views)
Book cover: A Modern Course on Curves and SurfacesA Modern Course on Curves and Surfaces
by - virtualmathmuseum.org
Contents: What is Geometry; Geometry of Inner-Product Spaces; Linear Maps and the Euclidean Group; Adjoints of Linear Maps and the Spectral Theorem; Differential Calculus on Inner-Product Spaces; Normed Spaces and Integration; ODE; and more.
(10607 views)