Logo

Lecture Notes on General Relativity

Small book cover: Lecture Notes on General Relativity

Lecture Notes on General Relativity
by

Publisher: University of California
Number of pages: 238

Description:
These notes represent approximately one semester's worth of lectures on introductory general relativity for beginning graduate students in physics. Topics include manifolds, Riemannian geometry, Einstein’s equations, and three applications: gravitational radiation, black holes, and cosmology.

Home page url

Download or read it online for free here:
Download link
(1.5MB, PDF)

Similar books

Book cover: Introduction to the Theory of Black HolesIntroduction to the Theory of Black Holes
by - Utrecht University
Contents: The Metric of Space and Time; Curved coordinates; A short introduction to General Relativity; Gravity; The Schwarzschild Solution; The Chandrasekhar Limit; Gravitational Collapse; The Reissner-Nordstrom Solution; Horizons; and more.
(18651 views)
Book cover: Post-Newtonian Theory for the Common ReaderPost-Newtonian Theory for the Common Reader
by - University of Guelph
From the table of contents: Preliminaries; Integration techniques; First post-Minkowskian approximation; Second post-Minkowskian approximation; Equations of motion; Gravitational waves; Energy radiated and radiation reaction.
(6007 views)
Book cover: Complex Geometry of Nature and General RelativityComplex Geometry of Nature and General Relativity
by - arXiv
An attempt is made of giving a self-contained introduction to holomorphic ideas in general relativity, following work over the last thirty years by several authors. The main topics are complex manifolds, spinor and twistor methods, heaven spaces.
(11729 views)
Book cover: Introduction to Differential Geometry and General RelativityIntroduction to Differential Geometry and General Relativity
by
Smooth manifolds and scalar fields, tangent vectors, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, the Riemann curvature tensor, premises of general relativity.
(17499 views)