**Manifolds and Differential Forms**

by Reyer Sjamaar

**Publisher**: Cornell University 2017**Number of pages**: 171

**Description**:

The course covers manifolds and differential forms for an audience of undergraduates who have taken a typical calculus sequence at a North American university, including basic linear algebra and multivariable calculus up to the integral theorems of Green, Gauss and Stokes.

Download or read it online for free here:

**Download link**

(2.7MB, PDF)

## Similar books

**The Convenient Setting of Global Analysis**

by

**Andreas Kriegl, Peter W. Michor**-

**American Mathematical Society**

This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory.

(

**9244**views)

**Floer Homology, Gauge Theory, and Low Dimensional Topology**

by

**David Ellwood, at al.**-

**American Mathematical Society**

Mathematical gauge theory studies connections on principal bundles. The book provides an introduction to current research, covering material from Heegaard Floer homology, contact geometry, smooth four-manifold topology, and symplectic four-manifolds.

(

**8355**views)

**Lecture Notes on Seiberg-Witten Invariants**

by

**John Douglas Moore**-

**Springer**

A streamlined introduction to the theory of Seiberg-Witten invariants suitable for second-year graduate students. These invariants can be used to prove that there are many compact topological four-manifolds which have more than one smooth structure.

(

**5980**views)

**Lectures on Sheaf Theory**

by

**C.H. Dowker**-

**Tata Institute of Fundamental Research**

A sheaf is a tool for systematically tracking locally defined data attached to the open sets of a topological space. Contents: Sheaves; Sections; Cohomology groups of a space with coefficients in a presheaf; Introduction of the family Phi; etc.

(

**5804**views)