**Manifolds and Differential Forms**

by Reyer Sjamaar

**Publisher**: Cornell University 2017**Number of pages**: 171

**Description**:

The course covers manifolds and differential forms for an audience of undergraduates who have taken a typical calculus sequence at a North American university, including basic linear algebra and multivariable calculus up to the integral theorems of Green, Gauss and Stokes.

Download or read it online for free here:

**Download link**

(2.7MB, PDF)

## Similar books

**Special Course in Functional Analysis: (Non-)Commutative Topology**

by

**Ville Turunen**-

**Aalto TKK**

In this book you will learn something about functional analytic framework of topology. And you will get an access to more advanced literature on non-commutative geometry, a quite recent topic in mathematics and mathematical physics.

(

**6390**views)

**Topology**

by

**Curtis T. McMullen**-

**Harvard University**

Contents: Introduction; Background in set theory; Topology; Connected spaces; Compact spaces; Metric spaces; Normal spaces; Algebraic topology and homotopy theory; Categories and paths; Path lifting and covering spaces; Global topology; etc.

(

**2677**views)

**Topology and Physics: A Historical Essay**

by

**C. Nash**-

**arXiv**

In this essay we wish to embark on the telling of a story which, almost certainly, stands only at its beginning. We shall discuss the links and the interaction between one very old subject, physics, and a much newer one, topology.

(

**8300**views)

**Lecture Notes on Seiberg-Witten Invariants**

by

**John Douglas Moore**-

**Springer**

A streamlined introduction to the theory of Seiberg-Witten invariants suitable for second-year graduate students. These invariants can be used to prove that there are many compact topological four-manifolds which have more than one smooth structure.

(

**5396**views)