Logo

Noncommutative Localization in Algebra and Topology

Large book cover: Noncommutative Localization in Algebra and Topology

Noncommutative Localization in Algebra and Topology
by

Publisher: Cambridge University Press
ISBN/ASIN: 052168160X
ISBN-13: 9780521681605
Number of pages: 323

Description:
Noncommutative localization is a powerful algebraic technique for constructing new rings by inverting elements, matrices and more generally morphisms of modules. The applications to topology are via the noncommutative localizations of the fundamental group rings.

Download or read it online for free here:
Download link
(1.7MB, PDF)

Similar books

Book cover: Manifolds and Differential FormsManifolds and Differential Forms
by - Cornell University
The text covers manifolds and differential forms for an audience of undergraduates who have taken a typical calculus sequence, including basic linear algebra and multivariable calculus up to the integral theorems of Green, Gauss and Stokes.
(11840 views)
Book cover: Lectures on Sheaf TheoryLectures on Sheaf Theory
by - Tata Institute of Fundamental Research
A sheaf is a tool for systematically tracking locally defined data attached to the open sets of a topological space. Contents: Sheaves; Sections; Cohomology groups of a space with coefficients in a presheaf; Introduction of the family Phi; etc.
(8635 views)
Book cover: Topology and Physics: A Historical EssayTopology and Physics: A Historical Essay
by - arXiv
In this essay we wish to embark on the telling of a story which, almost certainly, stands only at its beginning. We shall discuss the links and the interaction between one very old subject, physics, and a much newer one, topology.
(13040 views)
Book cover: Special Course in Functional Analysis: (Non-)Commutative TopologySpecial Course in Functional Analysis: (Non-)Commutative Topology
by - Aalto TKK
In this book you will learn something about functional analytic framework of topology. And you will get an access to more advanced literature on non-commutative geometry, a quite recent topic in mathematics and mathematical physics.
(10455 views)