Logo

A Gentle Introduction to the Art of Mathematics

Large book cover: A Gentle Introduction to the Art of Mathematics

A Gentle Introduction to the Art of Mathematics
by

Publisher: Southern Connecticut State University
Number of pages: 428

Description:
The point of this book is to help you with the transition from doing math at an elementary level (which is concerned mostly with solving problems) to doing math at an advanced level (which is much more concerned with axiomatic systems and proving statements within those systems).

Home page url

Download or read it online for free here:
Download link
(1.5MB, PDF)

Similar books

Book cover: An Introduction to Higher MathematicsAn Introduction to Higher Mathematics
by - Whitman College
Contents: Logic (Logical Operations, De Morgan's Laws, Logic and Sets); Proofs (Direct Proofs, Existence proofs, Mathematical Induction); Number Theory (The Euclidean Algorithm); Functions (Injections and Surjections, Cardinality and Countability).
(10154 views)
Book cover: Mathematical Reasoning: Writing and ProofMathematical Reasoning: Writing and Proof
by - Pearson Education, Inc.
'Mathematical Reasoning' is designed to be a text for the first course in the college mathematics curriculum that introduces students to the processes of constructing and writing proofs and focuses on the formal development of mathematics.
(8182 views)
Book cover: Proofs and Concepts: the fundamentals of abstract mathematicsProofs and Concepts: the fundamentals of abstract mathematics
by - University of Lethbridge
This undergraduate textbook provides an introduction to proofs, logic, sets, functions, and other fundamental topics of abstract mathematics. It is designed to be the textbook for a bridge course that introduces undergraduates to abstract mathematics.
(10245 views)
Book cover: Fundamental Concepts of MathematicsFundamental Concepts of Mathematics
by - University of Massachusetts
Problem Solving, Inductive vs. Deductive Reasoning, An introduction to Proofs; Logic and Sets; Sets and Maps; Counting Principles and Finite Sets; Relations and Partitions; Induction; Number Theory; Counting and Uncountability; Complex Numbers.
(10626 views)