Reinforcement Learning
by C. Weber, M. Elshaw, N. M. Mayer
Publisher: InTech 2008
ISBN-13: 9783902613141
Number of pages: 424
Description:
The first 11 chapters of this book describe and extend the scope of reinforcement learning. The remaining 11 chapters show that there is already wide usage in numerous fields. Reinforcement learning can tackle control tasks that are too complex for traditional, hand-designed, non-learning controllers. As learning computers can deal with technical complexities, the tasks of human operators remain to specify goals on increasingly higher levels.
Download or read it online for free here:
Download link
(12MB, PDF)
Similar books
Bayesian Reasoning and Machine Learning
by David Barber - Cambridge University Press
The book is designed for final-year undergraduate students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basics to advanced techniques within the framework of graphical models.
(23379 views)
by David Barber - Cambridge University Press
The book is designed for final-year undergraduate students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basics to advanced techniques within the framework of graphical models.
(23379 views)
Introduction to Machine Learning for the Sciences
by Titus Neupert, et al. - arXiv.org
This is an introductory machine learning course specifically developed with STEM students in mind, written by the theoretical Condensed Matter Theory group at the University of Zurich. We discuss supervised, unsupervised, and reinforcement learning.
(3623 views)
by Titus Neupert, et al. - arXiv.org
This is an introductory machine learning course specifically developed with STEM students in mind, written by the theoretical Condensed Matter Theory group at the University of Zurich. We discuss supervised, unsupervised, and reinforcement learning.
(3623 views)
An Introduction to Statistical Learning
by G. James, D. Witten, T. Hastie, R. Tibshirani - Springer
This book provides an introduction to statistical learning methods. It contains a number of R labs with detailed explanations on how to implement the various methods in real life settings and it is a valuable resource for a practicing data scientist.
(10467 views)
by G. James, D. Witten, T. Hastie, R. Tibshirani - Springer
This book provides an introduction to statistical learning methods. It contains a number of R labs with detailed explanations on how to implement the various methods in real life settings and it is a valuable resource for a practicing data scientist.
(10467 views)
Machine Learning and Data Mining: Lecture Notes
by Aaron Hertzmann - University of Toronto
Contents: Introduction to Machine Learning; Linear Regression; Nonlinear Regression; Quadratics; Basic Probability Theory; Probability Density Functions; Estimation; Classification; Gradient Descent; Cross Validation; Bayesian Methods; and more.
(10483 views)
by Aaron Hertzmann - University of Toronto
Contents: Introduction to Machine Learning; Linear Regression; Nonlinear Regression; Quadratics; Basic Probability Theory; Probability Density Functions; Estimation; Classification; Gradient Descent; Cross Validation; Bayesian Methods; and more.
(10483 views)