**Notes on Differential Geometry and Lie Groups**

by Jean Gallier

**Publisher**: University of Pennsylvania 2010

**Description**:

Contents: Introduction to Manifolds and Lie Groups; Review of Groups and Group Actions; Manifolds; Construction of Manifolds From Gluing Data; Lie Groups, Lie Algebra, Exponential Map; The Derivative of exp and Dynkin's Formula; Bundles, Riemannian Metrics, Homogeneous Spaces; Differential Forms; Integration on Manifolds; Distributions and the Frobenius Theorem; Connections and Curvature in Vector Bundles; Geodesics on Riemannian Manifolds; Curvature in Riemannian Manifolds; etc.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Introductory Treatise On Lie's Theory Of Finite Continuous Transformation Groups**

by

**John Edward Campbell**-

**Oxford Clarendon Press**

In this treatise an attempt is made to give, in as elementary a form as possible, the main outlines of Lie's theory of Continuous Groups. Even those familiar with the theory may find something new in the form in which the theory is here presented.

(

**4162**views)

**Lecture Notes in Lie Groups**

by

**Vladimir G. Ivancevic, Tijana T. Ivancevic**-

**arXiv**

These notes are designed for a 1-semester third year or graduate course in mathematics, physics, or biology. We give both physical and medical examples of Lie groups. The only necessary background are advanced calculus and linear algebra.

(

**6698**views)

**An Introduction to Lie Group Integrators**

by

**E. Celledoni, H. Marthinsen, B. Owren**-

**arXiv**

The authors give a short and elementary introduction to Lie group methods. A selection of applications of Lie group integrators are discussed. Finally, a family of symplectic integrators on cotangent bundles of Lie groups is presented ...

(

**2102**views)

**Lie groups and Lie algebras**

by

**N. Reshetikhin, V. Serganova, R. Borcherds**-

**UC Berkeley**

From the table of contents: Tangent Lie algebras to Lie groups; Simply Connected Lie Groups; Hopf Algebras; PBW Theorem and Deformations; Lie algebra cohomology; Engel's Theorem and Lie's Theorem; Cartan Criterion, Whitehead and Weyl Theorems; etc.

(

**8429**views)