Notes on Differential Geometry and Lie Groups

Small book cover: Notes on Differential Geometry and Lie Groups

Notes on Differential Geometry and Lie Groups

Publisher: University of Pennsylvania

Contents: Introduction to Manifolds and Lie Groups; Review of Groups and Group Actions; Manifolds; Construction of Manifolds From Gluing Data; Lie Groups, Lie Algebra, Exponential Map; The Derivative of exp and Dynkin's Formula; Bundles, Riemannian Metrics, Homogeneous Spaces; Differential Forms; Integration on Manifolds; Distributions and the Frobenius Theorem; Connections and Curvature in Vector Bundles; Geodesics on Riemannian Manifolds; Curvature in Riemannian Manifolds; etc.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Lie Groups, Physics, and GeometryLie Groups, Physics, and Geometry
by - Drexel University
The book emphasizes the most useful aspects of Lie groups, in a way that is easy for students to acquire and to assimilate. It includes a chapter dedicated to the applications of Lie group theory to solving differential equations.
Book cover: An Introduction to Lie Group IntegratorsAn Introduction to Lie Group Integrators
by - arXiv
The authors give a short and elementary introduction to Lie group methods. A selection of applications of Lie group integrators are discussed. Finally, a family of symplectic integrators on cotangent bundles of Lie groups is presented ...
Book cover: Notes on Classical GroupsNotes on Classical Groups
by - Queen Mary and Westfield College
Notes for an M.Sc. course: Fields and vector spaces; Linear and projective groups; Polarities and forms; Symplectic groups; Unitary groups; Orthogonal groups; Klein correspondence and triality; A short bibliography on classical groups.
Book cover: Lecture Notes in Lie GroupsLecture Notes in Lie Groups
by - arXiv
These notes are designed for a 1-semester third year or graduate course in mathematics, physics, or biology. We give both physical and medical examples of Lie groups. The only necessary background are advanced calculus and linear algebra.