Notes on Differential Geometry and Lie Groups

Small book cover: Notes on Differential Geometry and Lie Groups

Notes on Differential Geometry and Lie Groups

Publisher: University of Pennsylvania

Contents: Introduction to Manifolds and Lie Groups; Review of Groups and Group Actions; Manifolds; Construction of Manifolds From Gluing Data; Lie Groups, Lie Algebra, Exponential Map; The Derivative of exp and Dynkin's Formula; Bundles, Riemannian Metrics, Homogeneous Spaces; Differential Forms; Integration on Manifolds; Distributions and the Frobenius Theorem; Connections and Curvature in Vector Bundles; Geodesics on Riemannian Manifolds; Curvature in Riemannian Manifolds; etc.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Lectures on Discrete Subgroups of Lie GroupsLectures on Discrete Subgroups of Lie Groups
by - Tata Institute of Fundamental Research
Contents: Preliminaries; Complexification of a real Linear Lie Group; Intrinsic characterization of K* and E; R-regular elements; Discrete Subgroups; Some Ergodic Properties of Discrete Subgroups; Real Forms of Semi-simple Algebraic Groups; etc.
Book cover: Lie Groups, Physics, and GeometryLie Groups, Physics, and Geometry
by - Drexel University
The book emphasizes the most useful aspects of Lie groups, in a way that is easy for students to acquire and to assimilate. It includes a chapter dedicated to the applications of Lie group theory to solving differential equations.
Book cover: Introductory Treatise On Lie's Theory Of Finite Continuous Transformation GroupsIntroductory Treatise On Lie's Theory Of Finite Continuous Transformation Groups
by - Oxford Clarendon Press
In this treatise an attempt is made to give, in as elementary a form as possible, the main outlines of Lie's theory of Continuous Groups. Even those familiar with the theory may find something new in the form in which the theory is here presented.
Book cover: Notes on Classical GroupsNotes on Classical Groups
by - Queen Mary and Westfield College
Notes for an M.Sc. course: Fields and vector spaces; Linear and projective groups; Polarities and forms; Symplectic groups; Unitary groups; Orthogonal groups; Klein correspondence and triality; A short bibliography on classical groups.