**Gravitational Waves, Sources, and Detectors**

by Bernard F Schutz, Franco Ricci

**Publisher**: arXiv 2010**Number of pages**: 82

**Description**:

Notes of lectures for graduate students that were given at Lake Como in 1999, covering the theory of linearized gravitational waves, their sources, and the prospects at the time for detecting gravitational waves. The lectures remain of interest for pedagogical reasons, and in particular because they contain a treatment of current-quadrupole gravitational radiation that is not readily available in other sources.

Download or read it online for free here:

**Download link**

(880KB, PDF)

## Similar books

**Complex Geometry of Nature and General Relativity**

by

**Giampiero Esposito**-

**arXiv**

An attempt is made of giving a self-contained introduction to holomorphic ideas in general relativity, following work over the last thirty years by several authors. The main topics are complex manifolds, spinor and twistor methods, heaven spaces.

(

**13788**views)

**Schwarzschild and Kerr Solutions of Einstein's Field Equation: an introduction**

by

**Christian Heinicke, Friedrich W. Hehl**-

**arXiv**

Starting from Newton's gravitational theory, we give a general introduction into the spherically symmetric solution of Einstein's vacuum field equation, the Schwarzschild solution, and into one specific stationary solution, the Kerr solution.

(

**5808**views)

**Vector Analysis and the Theory of Relativity**

by

**Francis Dominic Murnaghan**-

**Johns Hopkins press**

This monograph is the outcome of lectures delivered to the graduate department of mathematics of The Johns Hopkins University. Considerations of space have made it somewhat condensed in form, but the mode of presentation is sufficiently novel.

(

**12548**views)

**An Advanced Course in General Relativity**

by

**Eric Poisson**-

**University of Guelph**

These lecture notes are suitable for a one-semester course at the graduate level. Table of contents: Fundamentals; Geodesic congruences; hypersurfaces; Lagrangian and Hamiltonian formulations of general relativity; Black holes.

(

**9513**views)