Introduction to Partial Differential Equations
by Valeriy Serov
Publisher: University of Oulu 2011
Number of pages: 122
Description:
Contents: Preliminaries; Local Existence Theory; Fourier Series; One-dimensional Heat Equation; One-dimensional Wave Equation; Laplace Equation in Rectangle and in Disk; The Laplace Operator; The Dirichlet and Neumann Problems; Layer Potentials; The Heat Operator; The Wave Operator.
Download or read it online for free here:
Download link
(790KB, PDF)
Similar books

by Sigeru Mizohata - Tata Institute of Fundamental Research
A Cauchy problem in mathematics asks for the solution of a partial differential equation that satisfies certain conditions which are given on a hypersurface in the domain. Cauchy problems are an extension of initial value problems.
(8113 views)

by Sigurdur Freyr Hafstein
In this monograph we develop an algorithm for constructing Lyapunov functions for arbitrary switched dynamical systems, possessing a uniformly asymptotically stable equilibrium. We give examples of Lyapunov functions constructed by our method.
(7564 views)

by Per Kristen Jakobsen - arXiv.org
These lecture notes view the subject through the lens of applied mathematics. The physical context for basic equations like the heat equation, the wave equation and the Laplace equation are introduced early on, and the focus is on methods.
(3098 views)

by John Douglas Moore - UCSB
The author develops the most basic ideas from the theory of partial differential equations, and apply them to the simplest models arising from physics. He presents some of the mathematics that can be used to describe the vibrating circular membrane.
(12022 views)