Logo

A Primer on Mapping Class Groups

Small book cover: A Primer on Mapping Class Groups

A Primer on Mapping Class Groups
by

Publisher: Princeton University Press
ISBN/ASIN: 0691147949
ISBN-13: 9780691147949
Number of pages: 509

Description:
Our goal in this book is to explain as many important theorems, examples, and techniques as possible, as quickly and directly as possible, while at the same time giving (nearly) full details and keeping the text (nearly) selfcontained. This book contains some simplifications of known approaches and proofs, the exposition of some results that are not readily available, and some new material as well.

Download or read it online for free here:
Download link
(3.4MB, PDF)

Similar books

Book cover: Lower K- and L-theoryLower K- and L-theory
by - Cambridge University Press
This is the first treatment of the applications of the lower K- and L-groups to the topology of manifolds such as Euclidean spaces, via Whitehead torsion and the Wall finiteness and surgery obstructions. Only elementary constructions are used.
(5150 views)
Book cover: Combinatorial Knot TheoryCombinatorial Knot Theory
by - University of Illinois at Chicago
This book is an introduction to knot theory and to Witten's approach to knot theory via his functional integral. Contents: Topics in combinatorial knot theory; State Models and State Summations; Vassiliev Invariants and Witten's Functional Integral.
(5024 views)
Book cover: Four-manifolds, Geometries and KnotsFour-manifolds, Geometries and Knots
by - arXiv
The goal of the book is to characterize algebraically the closed 4-manifolds that fibre nontrivially or admit geometries in the sense of Thurston, or which are obtained by surgery on 2-knots, and to provide a reference for the topology of such knots.
(6569 views)
Book cover: Algebraic and Geometric SurgeryAlgebraic and Geometric Surgery
by - Oxford University Press
Surgery theory is the standard method for the classification of high-dimensional manifolds, where high means 5 or more. This book aims to be an entry point to surgery theory for a reader who already has some background in topology.
(4824 views)