**Galois Groups and Fundamental Groups**

by David Meredith

**Publisher**: San Francisco State University 1999**Number of pages**: 89

**Description**:

This course brings together two areas of mathematics that each concern symmetry -- symmetry in algebra, in the case of Galois theory; and symmetry in geometry, in the case of fundamental groups. Prerequisites are at least one course in algebra and analysis.

Download or read it online for free here:

**Download link**

(620KB, PDF)

## Similar books

**Finite Group Schemes**

by

**Richard Pink**-

**ETH Zurich**

The aim of the lecture course is the classification of finite commutative group schemes over a perfect field of characteristic p, using the classical approach by contravariant Dieudonne theory. The theory is developed from scratch.

(

**7079**views)

**Group Theory**

by

**J. S. Milne**

Contents: Basic Definitions and Results; Free Groups and Presentations; Coxeter Groups; Automorphisms and Extensions; Groups Acting on Sets; The Sylow Theorems; Subnormal Series; Solvable and Nilpotent Groups; Representations of Finite Groups.

(

**10437**views)

**Why are Braids Orderable?**

by

**Patrick Dehornoy, at al.**

This book is an account of several quite different approaches to Artin's braid groups, involving self-distributive algebra, uniform finite trees, combinatorial group theory, mapping class groups, laminations, and hyperbolic geometry.

(

**9461**views)

**Elements of Group Theory**

by

**F. J. Yndurain**-

**arXiv**

The following notes are the basis for a graduate course. They are oriented towards the application of group theory to particle physics, although some of it can be used for general quantum mechanics. They have no pretense of mathematical rigor.

(

**13242**views)