**Group Theory: Birdtracks, Lie's, and Exceptional Groups**

by Predrag Cvitanovic

**Publisher**: Princeton University Press 2008**ISBN/ASIN**: 0691118361**ISBN-13**: 9780691118369**Number of pages**: 285

**Description**:

If classical Lie groups preserve bilinear vector norms, what Lie groups preserve trilinear, quadrilinear, and higher order invariants? Answering this question from a fresh and original perspective, Predrag Cvitanovic takes the reader on the amazing, four-thousand-diagram journey through the theory of Lie groups. This book is the first to systematically develop, explain, and apply diagrammatic projection operators to construct all semi-simple Lie algebras, both classical and exceptional.

Download or read it online for free here:

**Download link**

(6MB, PDF)

## Similar books

**An Elementary Introduction to Group Theory**

by

**M. E. Charkani**-

**AMS**

The theory of groups is a branch of mathematics in which we study the concept of binaryoperations. Group theory has many applications in physics and chemistry, and is potentially applicable in any situation characterized by symmetry.

(

**1454**views)

**Thin Groups and Superstrong Approximation**

by

**Emmanuel Breuillard, Hee Oh (eds.)**-

**Cambridge University Press**

This book focuses on recent developments concerning various quantitative aspects of thin groups. It provides a broad panorama of a very active field of mathematics at the boundary between geometry, dynamical systems, number theory, and combinatorics.

(

**3008**views)

**Interval Groupoids**

by

**W. B. V. Kandasamy, F. Smarandache, M. K. Chetry**-

**arXiv**

This book defines new classes of groupoids, like matrix groupoid, polynomial groupoid, interval groupoid, and polynomial groupoid. This book introduces 77 new definitions substantiated and described by 426 examples and 150 theorems.

(

**6333**views)

**Algebraic Groups, Lie Groups, and their Arithmetic Subgroups**

by

**J. S. Milne**

This work is a modern exposition of the theory of algebraic group schemes, Lie groups, and their arithmetic subgroups. Algebraic groups are groups defined by polynomials. Those in this book can all be realized as groups of matrices.

(

**8625**views)