Higher Topos Theory
by Jacob Lurie
Publisher: Princeton University Press 2009
ISBN/ASIN: 0691140499
ISBN-13: 9780691140490
Number of pages: 943
Description:
Jacob Lurie presents the foundations of higher category theory, using the language of weak Kan complexes introduced by Boardman and Vogt, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language.
Download or read it online for free here:
Download link
(3.9MB, PDF)
Similar books
Category Theory
- Wikibooks
This book is an introduction to category theory, written for those who have some understanding of one or more branches of abstract mathematics, such as group theory, analysis or topology. It contains examples drawn from various branches of math.
(6920 views)
- Wikibooks
This book is an introduction to category theory, written for those who have some understanding of one or more branches of abstract mathematics, such as group theory, analysis or topology. It contains examples drawn from various branches of math.
(6920 views)
Category Theory Lecture Notes
by Michael Barr, Charles Wells
Categories originally arose in mathematics out of the need of a formalism to describe the passage from one type of mathematical structure to another. These notes form a short summary of some major topics in category theory.
(6945 views)
by Michael Barr, Charles Wells
Categories originally arose in mathematics out of the need of a formalism to describe the passage from one type of mathematical structure to another. These notes form a short summary of some major topics in category theory.
(6945 views)
Category Theory and Functional Programming
by Mikael Vejdemo-Johansson - University of St. Andrews
An introduction to category theory that ties into Haskell and functional programming as a source of applications. Topics: definition of categories, special objects and morphisms, functors, natural transformation, (co-)limits and special cases, etc.
(7049 views)
by Mikael Vejdemo-Johansson - University of St. Andrews
An introduction to category theory that ties into Haskell and functional programming as a source of applications. Topics: definition of categories, special objects and morphisms, functors, natural transformation, (co-)limits and special cases, etc.
(7049 views)
An Introduction to Category Theory in Four Easy Movements
by A. Schalk, H. Simmons - Manchester University
Notes for a course offered as part of the MSc. in Mathematical Logic. From the table of contents: Development and exercises; Functors and natural transformations; Limits and colimits, a universal solution; Cartesian closed categories.
(6917 views)
by A. Schalk, H. Simmons - Manchester University
Notes for a course offered as part of the MSc. in Mathematical Logic. From the table of contents: Development and exercises; Functors and natural transformations; Limits and colimits, a universal solution; Cartesian closed categories.
(6917 views)