Logo

Statistical Mechanics of Two-dimensional and Geophysical Flows

Small book cover: Statistical Mechanics of Two-dimensional and Geophysical Flows

Statistical Mechanics of Two-dimensional and Geophysical Flows
by

Publisher: arXiv
Number of pages: 137

Description:
The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter's troposphere and ocean vortices and jets.

Home page url

Download or read it online for free here:
Download link
(1.5MB, PDF)

Similar books

Book cover: Topics in dynamics I: FlowsTopics in dynamics I: Flows
by - Princeton University Press
Lecture notes for a course on differential equations covering differential calculus, Picard's method, local structure of vector fields, sums and Lie products, self-adjoint operators on Hilbert space, commutative multiplicity theory, and more.
(15277 views)
Book cover: The Secret of SailingThe Secret of Sailing
by
This book presents a mathematical theory of sailing based on a combination of analysis and computation. This new theory is fundamentally different from that envisioned in the classical theories for lift in inviscid flow and for drag in viscous flow.
(9740 views)
Book cover: Computational Fluid Dynamics: Technologies and ApplicationsComputational Fluid Dynamics: Technologies and Applications
by - InTech
This is a state-of-art reference book in the area of computational fluid dynamics for CFD engineers, scientists, applied physicists and post-graduate students. The book also presents new and innovative CFD research and developments.
(11452 views)
Book cover: Using Multiscale Norms to Quantify Mixing and TransportUsing Multiscale Norms to Quantify Mixing and Transport
by - arXiv
Mixing is relevant to many areas of science and engineering, including the pharmaceutical and food industries, oceanography, atmospheric sciences, etc. In all these situations one goal is to improve the degree of homogenisation of a substance.
(6886 views)