Logo

Solution Methods In Computational Fluid Dynamics

Small book cover: Solution Methods In Computational Fluid Dynamics

Solution Methods In Computational Fluid Dynamics
by

Publisher: NASA
Number of pages: 90

Description:
Implicit finite difference schemes for solving two dimensional and three dimensional Euler and Navier-Stokes equations will be addressed. The methods are demonstrated in fully vectorized codes for a CRAY type architecture. We shall concentrate on the Beam and Warming implicit approximate factorization algorithm in generalized coordinates.

Download or read it online for free here:
Download link
(1.1MB, PDF)

Similar books

Book cover: Exploring the Biofluiddynamics of Swimming and FlightExploring the Biofluiddynamics of Swimming and Flight
by - Wageningen University
Many organisms move through water or air in order to survive and reproduce. It is useful to analyze fluid motion as a collection of vortices: vortices interact with the moving organism, interact with each other, and evolve independently in time.
(6350 views)
Book cover: The Secret of SailingThe Secret of Sailing
by
This book presents a mathematical theory of sailing based on a combination of analysis and computation. This new theory is fundamentally different from that envisioned in the classical theories for lift in inviscid flow and for drag in viscous flow.
(11942 views)
Book cover: Using Multiscale Norms to Quantify Mixing and TransportUsing Multiscale Norms to Quantify Mixing and Transport
by - arXiv
Mixing is relevant to many areas of science and engineering, including the pharmaceutical and food industries, oceanography, atmospheric sciences, etc. In all these situations one goal is to improve the degree of homogenisation of a substance.
(8899 views)
Book cover: Some Open Questions in HydrodynamicsSome Open Questions in Hydrodynamics
by - arXiv
There are many deep open questions that come with the theory of fluid mechanics. We discuss some of them that we classify in two categories, the long term behavior of solutions of equations of hydrodynamics and the definition of initial conditions.
(6288 views)